
ONE(On-device Neural Engine)
Release 1.25.0

Sep 08, 2023





Contents

1 Overview 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Overall Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Supported Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Workgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 How To 5
2.1 How to Build Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 How to Build Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 How to Build Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 How to Build Runtime with GBS for Tizen/RPi4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 How to Build Using Prebuilt Docker Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 How to Cross-build Runtime for AARCH64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 How to Cross-build Runtime for Android . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8 How to Cross-build Runtime for ARM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.9 How to Run Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.10 How to Make an Application with Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.11 How to Use API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.12 How to Use NNAPI Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.13 How to Use NNFW API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.14 How to Use Specific Backend during Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.15 How to Contribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.16 How to Remote Debugging with Visual Studio Code . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.17 How to Add a New Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.18 How To Introduce a New Operation Into Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.19 How To Introduce a New Operation Into Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Runtime 43
3.1 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Controlflow Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Executors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5 Heterogeneous Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Backend API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.7 Compute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.8 Supported Operations and backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

i



4 Compiler 55
4.1 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Middleend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4 IR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.7 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Common IR 101
5.1 Introduction to circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 What is Common IR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Package 103
6.1 Introduction to Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Design of Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Platform 105
7.1 Ubuntu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2 Tizen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.3 Android . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8 Devices 107
8.1 ODROID-XU3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.2 ODROID-XU4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.3 Raspberry Pi 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9 Test & Benchmarks 109
9.1 Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

10 Release 111
10.1 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.2 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.3 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.4 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.5 1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.6 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.7 1.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
10.8 1.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
10.9 1.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
10.10 1.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
10.11 1.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
10.12 1.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
10.13 1.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
10.14 1.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
10.15 1.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
10.16 1.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
10.17 1.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

11 Indices and tables 123

ii



CHAPTER 1

Overview

1.1 Background

Artificial intelligence (AI) techniques are getting popular and utilized in various products and services. While the
cloud-based AI techniques have been used to perform compute/memory intensive inferences because of the powerful
servers on cloud, on-device AI technologies are recently drawing attention from the mobile industry for response
time reduction, privacy protection, and connection-less AI service. Big mobile players are investing their research
effort on the on-device AI technologies and already announced hardware and software on-device AI solutions. We are
not leading this trend currently, but since on-device AI area is just started and still in the initial state, there are still
opportunities and possibilities to reduce the gap between pioneers and us. We believe on-device AI will become a key
differentiator for mobile phone, TV, and other home appliances, and thus developing on-device AI software stack is of
paramount importance in order to take leadership in the on-device AI technology.

Although the vision of on-device AI is promising, enabling on-device AI involves unique technical challenges com-
pared to traditional cloud-based approach. This is because on-device AI tries to conduct inference tasks solely on
device without connecting to cloud resources. Specifically, hardware resources on device, such as processor per-
formance, memory capacity, and power budget, are very scarce and limit the compute capability, which is typically
required to execute complicated neural network (NN) models. For example, in one product requirement, a mobile
device should consume less than 1.2W and could use at most 2W only for 10 minutes due to thermal issue. Next,
on-device AI software stack needs to support diverse device environments, since embedded platforms may consist
of heterogeneous compute devices, such as CPU, GPU, DSP, or neural processing unit (NPU), and use different OS
platforms, such as Tizen, Android, or various Linux.

To tackle the challenges above and to have the leadership on on-device AI technology, this project, as the first step,
aims at developing a neural network inference framework specialized and optimized for on-device AI.

1.2 Roadmap

This document describes roadmap of ONE project.

This project ONE aims at providing a high-performance, on-device neural network (NN) inference framework that
performs inference of a given NN model on processors, such as CPU, GPU, DSP, or NPU, in the target platform, such

1
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as Tizen, Android, and Ubuntu.

1.2.1 Progress

Until last year, we already saw significant gains in accelerating with a single CPU or GPU backend. We have seen
better performance improvements, not only when using a single backend, but even when mixing CPUs or GPUs con-
sidering the characteristics of individual operations. It could give us an opportunity to have a high degree of freedom
in terms of operator coverage, and possibly provide better performance compared to single backend acceleration.

On the other hand, we introduced the compiler as a front-end. This will support a variety of deep learning frameworks
in relatively spacious host PC environments, while the runtime running on the target device is intended to take a
smaller burden. In this approach, the compiler and the runtime will effectively share information among themselves
by the Common IR, named circle, and a container format which is referred to as the NN Package.

1.2.2 Goal

In the meantime, we have been working on improving the acceleration performance based on the vision model. From
this year, now we start working on the voice model. The runtime requirements for the voice model will be different
from those of the vision model. There will be new requirements that we do not recognize yet, along with some
already recognized elements such as control flow and dynamic tensor. In addition, recent studies on voice models
require efficient support for specific architectures such as attention, transformer, and BERT. Also, depending on the
characteristics of most voice models with large memory bandwidth, we will have to put more effort into optimizing
the memory bandwidth at runtime.

1.2.3 Deliverables

• Runtime

– Control Flow support (IF/WHILE)

– Dynamic Tensor support

– High quality kernel development for UINT8 quantized model

– End-to-end performance optimization for voice models

• Compiler

– More than 100 operations support

– Standalone circle interpreter

– Completion and application of circle2circle pass

* circle-quantizer for UINT8 and INT16

* circle-optimizer

– Grphical circle model viewer

1.2.4 Milestones

• 2020 Project Milestones

2 Chapter 1. Overview
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1.2.5 Workgroups (WGs)

• We organize WGs for major topics, and each WG will be working on its own major topic by breaking it into
small tasks/issues, performing them inside WG, and collaborating between WGs.

• The WG information can be found here.

1.3 Overall Architecture

1.3.1 Compiler

1.3.2 Package

1.3.3 Runtime

1.4 Supported Operations

As of 2020-06-26

• TensorFlow commit e5023a1738cce7efcdf9d87863b85c80ab2f8c9e

• This commit is Tensorflow nightly build after v2.2.0 release

1.4.1 circle additional operators

1.5 Workgroup

1.5.1 Runtime WG1

1.5.2 Runtime WG2

1.5.3 Runtime WG3

1.5.4 Compiler Frontend WG

1.5.5 Compiler Backend WG

1.5.6 How to Join?

1.3. Overall Architecture 3
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CHAPTER 2

How To

2.1 How to Build Compiler

This document is based on the system where Ubuntu Desktop Linux 18.04 LTS is installed with default settings, and
can be applied in other environments without much difference. For reference, the development of our project started
in the Ubuntu Desktop Linux 16.04 LTS environment. As of now, to build in 16.04, please use gcc 7.x or above.

2.1.1 Build Requires

If you are going to build this project, the following modules must be installed on your system:

• CMake

• Boost C++ libraries

In the Ubuntu, you can easily install it with the following command.

$ sudo apt-get install cmake libboost-all-dev

If your linux system does not have the basic development configuration, you will need to install more
packages. A list of all packages needed to configure the development environment can be found in the
https://github.com/Samsung/ONE/blob/master/infra/docker/Dockerfile.1804 file.

Here is a summary of it

$ sudo apt-get install \
build-essential \
clang-format-8 \
cmake \
doxygen \
git \
hdf5-tools \
lcov \
libatlas-base-dev \

(continues on next page)
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(continued from previous page)

libboost-all-dev \
libgflags-dev \
libgoogle-glog-dev \
libgtest-dev \
libhdf5-dev \
libprotobuf-dev \
protobuf-compiler \
pylint \
python3 \
python3-pip \
python3-venv \
scons \
software-properties-common \
unzip \
wget

$ mkdir /tmp/gtest
$ cd /tmp/gtest
$ cmake /usr/src/gtest
$ make
$ sudo mv *.a /usr/lib

$ pip install yapf==0.22.0 numpy

Additional install python3.8 if you are using Ubuntu 18.04.

$ sudo apt-get install \
python3.8 \
python3.8-dev \
python3.8-venv

If you get Unable to locate package clang-format-8 then just use clang-format.

2.1.2 Build for Ubuntu

In a typical linux development environment, including Ubuntu, you can build the compiler with a simple command
like this:

$ git clone https://github.com/Samsung/ONE.git one
$ cd one
$ ./nncc configure
$ ./nncc build

Build artifacts will be placed in build folder.

To run unit tests:

$ ./nncc test

Above steps will build all the modules in the compiler folder. There are modules that are currently not active. To build
only as of now active modules of the compiler, we provide a preset of modules to build with below command:

$ ./nnas create-package --prefix $HOME/.local

With this command, ~/.local folder will contain all files in release. If you have added ~/.local/bin in PATH,
then you will now have latest compiler binaries.

6 Chapter 2. How To
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Build for debug and release separately

Build target folder can be customized by NNCC_WORKSPACE environment, as we may want to separate debug and
release builds.

$ NNCC_WORKSPACE=build/debug ./nncc configure
$ ./nncc build

will build debug version in build/debug folder, and

$ NNCC_WORKSPACE=build/release ./nncc configure -DCMAKE_BUILD_TYPE=Release
$ ./nncc build

will build release version in build/release folder.

Trouble shooting

If you are using python3.8, as there is no TensorFlow1.13.2 package for python3.8, build may fail. Please install
python3.7 or lower versions as default python3.

2.1.3 Build for Windows

To build for Windows, we use MinGW(Minimalist GNU for Windows). Here you can download a tool that includes
it.

$ git clone https://github.com/Samsung/ONE.git one
$ cd one
$ NNAS_BUILD_PREFIX=build ./nnas create-package --preset 20200731_windows --prefix
→˓install

• NNAS_BUILD_PREFIX is the path to directory where compiler-build-artifacts will be stored.

• --preset is the one that specifies a version you will install. You can see infra/packaging/preset/
directory for more details and getting latest version.

• --prefix is the install directory.

2.1.4 Cross build for Ubuntu/ARM32 (experimental)

Some modules are availble to run in Ubuntu/ARM32 through cross building.

While configuring the build, some modules need to execute tools for generating test materials and they need to execute
in the host(x86-64). So some modules are needed to build the tools for host before cross building.

Cross build overall steps are like, (1) configure for host (2) build tools for host (3) configure for ARM32 target (4) and
then build for ARM32 target.

Unit tests can also run in target device. But value test needs to run TensorFlow lite to get expected results, and it would
be a task to do this so the data files from host execution are used instead.

Thus to run the unit tests in the target, running in host is needed in prior.

2.1. How to Build Compiler 7
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Prepare root file system

You should prepare Ubuntu/ARM32 root file system for cross compilation. Please refer how-to-cross-build-runtime-
for-arm.md for preparation.

You can set ROOTFS_ARM environment variable if you have in alternative folder.

Clean existing external source for patches

Some external projects from source are not “cross compile ready with CMake” projects. This experimental project
prepared some patches for this. Just remove the source and stamp file like below and the make will prepare patch
applied source codes.

rm -rf externals/HDF5
rm -rf externals/PROTOBUF
rm externals/HDF5.stamp
rm externals/PROTOBUF.stamp

Build

To cross build, infra/nncc/Makefile.arm32 file is provided as an example to work with make command.

make -f infra/nncc/Makefile.arm32 cfg
make -f infra/nncc/Makefile.arm32 debug

First make will run above steps (1), (2) and (3). Second make will run (4).

Test

Preprequisite for testing in ARM32 device.

# numpy is required for value match in ARM32 target device
sudo apt-get install python3-pip
python3 -m pip install numpy

You can also run unit tests in ARM32 Ubuntu device with cross build results. First you need to run the test in host to
prepare files that are currently complicated in target device.

# run this in x86-64 host
make -f infra/nncc/Makefile.arm32 test_prep

# run this in ARM32 target device
make -f infra/nncc/Makefile.arm32 test

NOTE: this assumes

• host and target have same directoy structure

• should copy build folder to target or

• mounting ONE folder with NFS on the target would be simple

8 Chapter 2. How To
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2.2 How to Build Package

2.2.1 Overview

This document describes how to build a Package to run the model in our runtime onert that consists of model and
additional file(s). Users can build a package through command line tools.

Steps of building a Package:

1. Import model and convert to circle

2. Optionally, optimize and quantize circle

3. Create package from circle

NOTE: Examples and options of each command shown below are from the version of writing this document. They
may differ from latest version of commands, 1.9.0. Please fire an issue or post a PR to correct them if anything needs
update.

2.2.2 Import model

Currently TensorFlow and TensorFlow lite models are supported as of writing this document.

To import a model, use one-import with a model framework key and arguments.

$ one-import FRAMEWORK [arguments]

Execute one-import without any key will show the list of supported frameworks.

Example of one-import command:

$ one-import
Usage: one-import [FRAMEWORK] ...
Available FRAMEWORK drivers:

bcq
tf
tflite

Example for TensorFlow

This is an example to import TensorFlow model:

$ one-import tf --input_path mymodel.pb --output_path mymodel.circle \
--input_arrays input1,input2 --input_shapes "1,224,224,3:1000" \
--output_arrays output

Running with --help will show current required/optional arguments:

$ one-import tf --help
Convert TensorFlow model to circle.
Usage: one-import-tf

--version Show version information and exit
--input_path <path/to/tfmodel>
--output_path <path/to/circle>
--input_arrays <names of the input arrays, comma-separated>
--input_shapes <input shapes, colon-separated>

(continues on next page)
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(continued from previous page)

--output_arrays <names of the output arrays, comma-separated>
--v2 Use TensorFlow 2.x interface (default is 1.x interface)

Example for TensorFlow lite

This is an example to import TensorFlow lite model:

$ one-import tflite --input_path mymodel.tflite --output_path mymodel.circle

Likewise, running with --help will show current required/optional arguments:

$ one-import tflite --help
Convert TensorFlow lite model to circle.
Usage: one-import-tflite

--version Show version information and exit
--input_path <path/to/tflitemodel>
--output_path <path/to/circle>

Example for TensorFlow Model Including BCQ Information

This is an example to import TensorFlow model which includes BCQ information. As a result of this command, BCQ
information nodes will be preserved.

$ one-import bcq --input_path bcqmodel.pb --output_path bcqmodel.circle

Likewise, running with --help will show current required/optional arguments:

$ one-import bcq --help
Convert TensorFlow model with BCQ to circle.
Usage: one-import-bcq

--version Show version information and exit
--input_path <path/to/tfmodel/with/BCQ>
--output_path <path/to/circle>
--input_arrays <names of the input arrays, comma-separated>
--input_shapes <input shapes, colon-separated>
--output_arrays <names of the output arrays, comma-separated>
--v2 Use TensorFlow 2.x interface (default is 1.x interface)

2.2.3 Optimize circle model

circle model can be optimized for better performance and smaller size. Typical optimization algorithm for this is to
fuse some patterns of operators to one fused operator.

This is an example to optimize circle model:

$ one-optimize --all --input_path mymodel.circle --output_path optmodel.circle

Run with --help will show current optimization options:

$ one-optimize --help
Optimize circle model.
Usage: one-optimize

(continues on next page)
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(continued from previous page)

--version Show version information and exit
--all Enable all optimization algorithms
--fuse_bcq Enable FuseBCQ Pass
--fuse_instnorm Enable FuseInstanceNormalization Pass
--resolve_customop_add

Enable ResolveCustomOpAddPass Pass
--resolve_customop_batchmatmul

Enable ResolveCustomOpBatchMatMulPass Pass
--resolve_customop_matmul

Enable ResolveCustomOpMatMulPass Pass
--input_path <path/to/input/circle>
--output_path <path/to/output/circle>

2.2.4 Quantize circle model

Floating-point circle model can be quantized to lower-precision format (e.g., uint8 or int16) for faster inference speed
and smaller model size, by reducing the number of bits that represent weights and activations.

This is an example to quantize circle model:

$ one-quantize --input_path mymodel.circle --output_path quantmodel.circle

Like wise, --help will show current quantization options:

$ one-quantize --help
Quantize circle model.
Usage: one-quantize

--version Show version information and exit
--input_dtype Input data type (supported: float32, default=float32)
--quantized_dtype Output quantized data type (supported: uint8, default=uint8)
--granularity Quantize granularity (supported: layer, channel, default=layer)
--min_percentile Minimum percentile (0.0~100.0, default=1.0)
--max_percentile Maximum percentile (0.0~100.0, default=99.0)
--mode Record mode (supported: percentile/moving_average,

→˓default=percentile)
--input_path <path/to/input/circle>
--input_data <path/to/input/data>
--output_path <path/to/output/circle>

2.2.5 Pack circle model

Use one-pack command to create package.

$ one-pack -i mymodel.circle -o nnpackage

nnpackage is a folder containing circle model and addition file(s)

$ tree nnpackage
nnpackage

mymodel
metadata

MANIFEST
mymodel.circle

2.2. How to Build Package 11



ONE(On-device Neural Engine), Release 1.25.0

Likewise, --help will show current package options:

$ one-pack --help
Package circle to nnpkg
Usage: one-pack

-v, --version Show version information and exit
-i <path/to/circle>
-o <path/to/nnpackage/folder>

2.3 How to Build Runtime

This document is based on the system where Ubuntu Desktop Linux 20.04 LTS is installed with default settings, and
can be applied in other environments without much difference. For reference, the development of our project started
in the Ubuntu Desktop Linux 16.04 LTS environment.

2.3.1 Build requirements

If you are going to build this project, the following modules must be installed on your system:

• C & C++ compiler

• CMake

• Boost C++ libraries

In the Ubuntu, you can easily install it with the following command.

$ sudo apt-get install cmake libboost-all-dev

If your linux system does not have the basic development configuration, you will need to install more
packages. A list of all packages needed to configure the development environment can be found in
https://github.com/Samsung/ONE/blob/master/infra/docker/focal/Dockerfile.

Here is a summary of it for runtime and related tools

$ sudo apt install \
build-essential \
clang-format-8 \
cmake \
doxygen \
git \
graphviz \
hdf5-tools \
lcov \
libboost-all-dev \
libhdf5-dev \
python3 \
python3-pip \
scons \
software-properties-common \
unzip \
wget

$ pip3 install yapf==0.22.0 numpy

12 Chapter 2. How To
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2.3.2 Build from source code, for Ubuntu

In a typical linux development environment, including Ubuntu, you can build the runtime with a simple command like
this:

$ git clone https://github.com/Samsung/ONE.git one
$ cd one
$ ./nnfw configure
$ ./nnfw build
$ ./nnfw install

For easy build process, we provides Makefile.template makefile.

$ make -f Makefile.template

To release build the runtime, add the environment variable BUILD_TYPE=release to the build command as fol-
lows.

$ export BUILD_TYPE=release
$ make -f Makefile.template

Or you can simply do something like this:

$ BUILD_TYPE=release make -f Makefile.template

The build method described here is a native build in which the build environment and execution environment
are same. So, this command creates a runtime binary targeting the current build architecture, probably x86_64, as the
execution environment. You can find the build output in the ./Product folder as follows:

$ tree -L 2 ./Product
./Product

out -> /home/sjlee/star/one/Product/x86_64-linux.release/out
x86_64-linux.release

obj
out

5 directories, 3 files

$ tree -L 3 ./Product/out
./Product/out

bin
onert_run
tflite_comparator
tflite_run

include
nnfw

NeuralNetworksEx.h
NeuralNetworksExtensions.h
NeuralNetworks.h
nnfw_experimental.h
nnfw.h

onert
backend
compiler
exec
ir
util

(continues on next page)
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(continued from previous page)

lib
libbackend_cpu.so
libbackend_ruy.so
libneuralnetworks.so
libnnfw-dev.so
libonert_core.so

nnapi-gtest
nnapi_gtest
nnapi_gtest.skip
nnapi_gtest.skip.x86_64-linux.cpu

test
command

nnpkg-test
prepare-model
unittest
verify-tflite

FillFrom_runner
list

benchmark_nnpkg_model_list.txt
nnpkg_test_list.armv7l-linux.acl_cl
nnpkg_test_list.armv7l-linux.acl_neon
nnpkg_test_list.armv7l-linux.cpu
tflite_comparator.aarch64.acl_cl.list
tflite_comparator.aarch64.acl_neon.list
tflite_comparator.aarch64.cpu.list
tflite_comparator.armv7l.acl_cl.list
tflite_comparator.armv7l.acl_neon.list
tflite_comparator.armv7l.cpu.list
tflite_comparator.x86_64.cpu.list

models
run_test.sh
tflite

nnpkgs
FillFrom

onert-test
unittest

ndarray_test
nnfw_api_gtest
nnfw_api_gtest_models

add
add_invalid_manifest
add_no_manifest
if_dynamic
mobilenet_v1_1.0_224
while_dynamic

nnfw_lib_misc_test
test_cker
test_onert_core
test_onert_frontend_nnapi
tflite_test

26 directories, 42 files

Here, let’s recall that the main target of our project is the arm architecture. If you have a development environment
running Linux for arm on a device made of an arm CPU, such as Odroid-XU4, you will get a runtime binary that can
be run on the arm architecture with the same command above. This is the simplest way to get a binary for an arm
device. However, in most cases, native builds on arm devices are too impractical as they require too long. Therefore,
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we will create an executable binary of an architecture other than x86_64 through a cross build. For cross-build
method for each architecture, please refer to the corresponding document in the following section, How to cross-build
runtime for different architecture.

Run test

The simple way to check whether the build was successful is to perform inference of the NN model using the runtime.
The model to be used for the test can be obtained as follows.

$ wget https://storage.googleapis.com/download.tensorflow.org/models/tflite/model_zoo/
→˓upload_20180427/inception_v3_2018_04_27.tgz
$ tar zxvf inception_v3_2018_04_27.tgz ./inception_v3.tflite
$ ls *.tflite
inception_v3.tflite

The result of running the inception_v3 model using runtime is as follows. Please consider that this is a test that simply
checks execution latency without considering the accuracy of the model.

$ ./Product/out/bin/onert_run ./inception_v3.tflite
Model Filename ./inception_v3.tflite
===================================
MODEL_LOAD takes 1.108 ms
PREPARE takes 0.190 ms
EXECUTE takes 183.895 ms
- MEAN : 183.895 ms
- MAX : 183.895 ms
- MIN : 183.895 ms
- GEOMEAN : 183.895 ms
===================================

If you use tflite_run instead of onert_run, the model will be executed using Tensorflow lite, the basic
framework for verification. From the previous build result, you can see that it is the path to the directory where
tflite_run and onert_run are located.

If you come here without any problems, you have all of the basic environments for runtime development.

2.3.3 Build for Tizen

(Will be written)

2.3.4 Build using docker image

If your development system is not a linux environment like Ubuntu, but you can use docker on your system, you can
build a runtime using a pre-configured docker image. Of course, you can also build a runtime using a docker image in
a ubuntu environment, without setting up a complicated development environment. For more information, please refer
to the following document.

• Build using prebuilt docker image

2.3.5 How to cross-build runtime for different architecture

Please refer to the following document for the build method for architecture other than x86_64, which is the basic
development environment.

2.3. How to Build Runtime 15
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• Cross building for ARM

• Cross building for AARCH64

• Cross building for Android

2.4 How to Build Runtime with GBS for Tizen/RPi4

This document describes how to build runtime with GBS for Tizen AARCH64. As a real example, we’ll also describe
how to prepare Tizen on Raspberry Pi 4 and show you how to run our test package runner onert_run.

For ARM32, there would be not much difference with some changes.

Host PC is Ubuntu 18.04 but other versions or distro may work with a little adjustments.

Detailed technical informations are not described here so please read referecnce pages while you go on.

2.4.1 Setting up build environment

(1) Add Tizen build tools repo

$ sudo vim /etc/apt/sources.list

Add this at the end

deb [trusted=yes] http://download.tizen.org/tools/latest-release/Ubuntu_18.04/ /

Note: There’s a slash(’/‘) at the end.

For other versions of Ubuntu, please refer http://download.tizen.org/tools/latest-release/ lists.

(2) Update package informations and upgrade to latest

$ sudo apt-get update
$ sudo apt-get upgrade

(3) Install GBS tools

$ sudo apt-get install gbs mic

To get more informations, please refer HERE

2.4.2 Build ONERT

(1) Set python2 as default python

Some tools of GBS run in python2 and won’t run with python3. Please check python version and set it to 2.x.

(2) set TIZEN_BUILD_ROOT

You may set GBS-ROOT to any place you like. Ususally we use home folder.

$ export TIZEN_BUILD_ROOT=$HOME/GBS-ROOT/

Adding to $HOME/.profile file would be a good thing.

(3) clone ONE repo
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git clone https://github.com/Samsung/ONE.git

(4) Build

$ cd ONE

$ gbs -c infra/nnfw/config/gbs.conf build --include-all -A aarch64 --define 'test_
→˓build 1'

• -A aarch64 is to set architecture to AARCH64. Use arm32 for ARM32 target.

• --define 'test_build 1' is to enable test build so that we can use onert_run

Now take a cup of coffee.

(5) Build result RPM packages

$ ls ~/GBS-ROOT/local/repos/tizen/aarch64/RPMS
nnfw-1.10.0-1.aarch64.rpm
nnfw-debuginfo-1.10.0-1.aarch64.rpm
nnfw-debugsource-1.10.0-1.aarch64.rpm
nnfw-devel-1.10.0-1.aarch64.rpm
nnfw-minimal-app-1.10.0-1.aarch64.rpm
nnfw-minimal-app-debuginfo-1.10.0-1.aarch64.rpm
nnfw-plugin-devel-1.10.0-1.aarch64.rpm
nnfw-test-1.10.0-1.aarch64.rpm
nnfw-test-debuginfo-1.10.0-1.aarch64.rpm

-1.10.0-1 may differ as this document was written with under 1.10.0 development.

2.4.3 Prepare Tizen on Raspberry Pi 4

Please refer https://wiki.tizen.org/Quick_guide_for_RPI4 for detailed descriptions.

(1) Download flashing tool

$ wget \
https://git.tizen.org/cgit/platform/kernel/u-boot/plain/scripts/tizen/sd_fusing_rpi3.
→˓sh?h=tizen \
--output-document=sd_fusing_rpi3.sh

$ chmod 755 sd_fusing_rpi3.sh

(2) Prepare Micro-SD memory card.

You first need to find out device name. This document will skip how to find this. Suppose it’s /dev/sdj:

$ sudo ./sd_fusing_rpi3.sh -d /dev/sdj --format

You need to change /dev/sdj to your configuration.

Partition table may look like this

Device Boot Start End Sectors Size Id Type
/dev/sdj1 * 8192 139263 131072 64M e W95 FAT16 (LBA)
/dev/sdj2 139264 6430719 6291456 3G 83 Linux
/dev/sdj3 6430720 9183231 2752512 1.3G 83 Linux
/dev/sdj4 9183232 62521343 53338112 25.4G 5 Extended

(continues on next page)

2.4. How to Build Runtime with GBS for Tizen/RPi4 17



ONE(On-device Neural Engine), Release 1.25.0
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/dev/sdj5 9185280 61958143 52772864 25.2G 83 Linux
/dev/sdj6 61960192 62025727 65536 32M 83 Linux
/dev/sdj7 62027776 62044159 16384 8M 83 Linux
/dev/sdj8 62046208 62111743 65536 32M 83 Linux
/dev/sdj9 62113792 62130175 16384 8M 83 Linux
/dev/sdj10 62132224 62263295 131072 64M 83 Linux
/dev/sdj11 62265344 62521343 256000 125M 83 Linux

(3) Download images

Please visit http://download.tizen.org/snapshots/tizen/unified/latest/images/standard/iot-boot-arm64-rpi4/ and
http://download.tizen.org/snapshots/tizen/unified/latest/images/standard/iot-headed-3parts-aarch64-rpi.

Please visit iot-boot-armv7l-rpi4 folder for ARM32 images.

Get latest file. As of writing this document, name has 20200908.3.

$ wget http://download.tizen.org/snapshots/tizen/unified/latest/images/standard/iot-
→˓boot-arm64-rpi4/tizen-unified_20200908.3_iot-boot-arm64-rpi4.tar.gz

$ wget http://download.tizen.org/snapshots/tizen/unified/latest/images/standard/iot-
→˓headed-3parts-aarch64-rpi/tizen-unified_20200908.3_iot-headed-3parts-aarch64-rpi.
→˓tar.gz

(4) Flash images to memory card

As like above, suppose memory card is at /dev/sdj

$ sudo ./sd_fusing_rpi3.sh -d /dev/sdj \
-b tizen-unified_20200908.3_iot-boot-arm64-rpi4.tar.gz \
tizen-unified_20200908.3_iot-headed-3parts-aarch64-rpi.tar.gz

You need to change /dev/sdj to your configuration and also tizen-unified_... file to your latest download
file name.

(5) Assign IP address for sdb connection

Here, we provide a way to connect sdb tool through TCP/IP.

Below steps will modify root image and set fixed IP address.

(5-1) Mount image to host

$ mkdir j2
$ sudo mount /dev/sdj2 j2

As like above, please update /dev/sdj2 to your configuration.

(5-2) Add a new file

$ vi j2/etc/systemd/system/ip.service

and set as like:

[Service]
Restart=always
RestartSec=1
User=root
ExecStart=/bin/sh -c "ifconfig eth0 192.168.x.y netmask 255.255.255.0 up"

(continues on next page)
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[Install]
WantedBy=multi-user.target

Replace 192.168.x.y to your actual ip address.

(5-3) Add a symbolic link

$ sudo mkdir -p j2/etc/systemd/system/multi-user.target.wants/
$ pushd j2/etc/systemd/system/multi-user.target.wants/
$ sudo ln -s ../../system/ip.service .
$ popd

(5-4) Now that every thing is ready, unmount and unplug your memory card and plug into RPi4, turn on the power.

$ sync
$ sudo umount j2

2.4.4 sdb connect to Tizen/RPi4

You may need to install Tizen Studio to use sdb command. Please visit https://developer.tizen.org/ if you don’t have
this.

We assume sdb command is in the PATH.

(1) Connect

$ sdb connect 192.168.x.y
connecting to 192.168.x.y:26101 ...
connected to 192.168.x.y:26101

Please update 192.168.x.y part to your actual IP address.

Check with devices command: you should see rpi3 or alike.

$ sdb devices
List of devices attached
192.168.x.y:26101 device rpi3

(2) Remount filesystem with R/W

You need to remount file system with Read/Write so that you can install packages.

$ sdb root on
$ sdb shell

Inside your Tizen/RPi4:

sh-3.2# mount -o rw,remount /

(3) Download dependent packages

In your host, maybe with another terminal, download packages from http://download.tizen.org/releases/daily/tizen/unified/latest/repos/standard/packages/aarch64/

$ wget http://download.tizen.org/releases/daily/tizen/unified/latest/repos/standard/
→˓packages/aarch64/libarmcl-v21.02-17.5.aarch64.rpm

(continues on next page)
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$ wget http://download.tizen.org/releases/daily/tizen/unified/latest/repos/standard/
→˓packages/aarch64/libhdf5-101-1.10.1-3.85.aarch64.rpm

$ wget http://download.tizen.org/releases/daily/tizen/unified/latest/repos/standard/
→˓packages/aarch64/libhdf5_cpp101-1.10.1-3.85.aarch64.rpm

(4) Copy to device

$ sdb push libarmcl-v21.02-17.5.aarch64.rpm /opt/usr/home/owner/share/tmp/
$ sdb push libhdf5-101-1.10.1-3.85.aarch64.rpm /opt/usr/home/owner/share/tmp/
$ sdb push libhdf5_cpp101-1.10.1-3.85.aarch64.rpm /opt/usr/home/owner/share/tmp/

And our runtime packages

$ cd ~/GBS-ROOT/local/repos/tizen/aarch64/RPMS
$ sdb push nnfw-1.10.0-1.aarch64.rpm /opt/usr/home/owner/share/tmp/
$ sdb push nnfw-test-1.10.0-1.aarch64.rpm /opt/usr/home/owner/share/tmp/

(5) Install dependent packages

Within Tizen/RPi4 shell

sh-3.2# cd /opt/usr/home/owner/share/tmp/

sh-3.2# rpm -i libarmcl-v21.02-17.5.aarch64.rpm
sh-3.2# rpm -i libhdf5-101-1.10.1-3.85.aarch64.rpm
sh-3.2# rpm -i libhdf5_cpp101-1.10.1-3.85.aarch64.rpm

There may be message like this but it seems OK:

/sbin/ldconfig: Cannot lstat /lib64/libhdf5.so.101.0.0: Permission denied

Continue install

sh-3.2# rpm -i nnfw-1.10.0-1.aarch64.rpm
sh-3.2# rpm -i nnfw-test-1.10.0-1.aarch64.rpm

Our Product binary folder is installed at /opt/usr/nnfw-test.

sh-3.2# cd /opt/usr/nnfw-test
sh-3.2# ls -al
total 16
drwxr-xr-x 4 root root 4096 Jan 1 09:05 .
drwxr-xr-x 14 root root 4096 Jan 1 09:05 ..
drwxr-xr-x 3 root root 4096 Jan 1 09:05 Product
drwxr-xr-x 3 root root 4096 Jan 1 09:05 infra

(6) Run nnpackage

Refer how-to-build-package.md document to produce nnpackage from a model.

Assume mobilenet_v2_1.4_224 nnpackage is already copied to /opt/usr/home/owner/media/
models folder with sdb command.

sh-3.2# BACKENDS="cpu" Product/out/bin/onert_run \
--nnpackage /opt/usr/home/owner/media/models/mobilenet_v2_1.4_224

(continues on next page)
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Package Filename /opt/usr/home/owner/media/models/mobilenet_v2_1.4_224
===================================
MODEL_LOAD takes 65.403 ms
PREPARE takes 158.716 ms
EXECUTE takes 373.447 ms
- MEAN : 373.447 ms
- MAX : 373.447 ms
- MIN : 373.447 ms
- GEOMEAN : 373.447 ms
===================================

2.5 How to Build Using Prebuilt Docker Image

2.6 How to Cross-build Runtime for AARCH64

In ONE, we use AARCH64 on build files such as Makefile, CMakeLists.txt and so on.

2.6.1 Prepare AARCH64 Ubuntu RootFS

Install required packages

$ sudo apt-get install qemu qemu-user-static binfmt-support debootstrap

Use install_rootfs.sh script to prepare Root File System. You should have sudo

$ sudo ./tools/cross/install_rootfs.sh aarch64

• supports arm(default) and aarch64 architecutre for now

• supports bionic(default) and focal release

To see the options,

$ ./tools/cross/install_rootfs.sh -h

RootFS will be prepared at tools/cross/rootfs/aarch64 folder.

* CAUTION: The OS version of rootfs must match the OS version of execution target device. On the other hand,
you need to match the Ubuntu version of the development PC with the Ubuntu version of rootfs to be used for
cross-build. Otherwise, unexpected build errors may occur.

If you are using Ubuntu 18.04 LTS, select bionic, if you are using Ubuntu 20.04 LTS, select focal. You can check
your Ubuntu code name in the following way.

$ cat /etc/lsb-release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=18.04
DISTRIB_CODENAME=bionic
DISTRIB_DESCRIPTION="Ubuntu 18.04.4 LTS"

If a build error occurs because the version of the development system and the target system do not match, and if you
can’t replace your development system for any reason, you can consider cross-build using the docker image.

2.5. How to Build Using Prebuilt Docker Image 21



ONE(On-device Neural Engine), Release 1.25.0

Prepare RootFS at alternative folder

Use ROOTFS_DIR to a full path to prepare at alternative path.

$ ROOTFS_DIR=/home/user/rootfs/aarch64-bionic sudo -E ./tools/cross/install_rootfs.sh
→˓aarch64

Using proxy

If you need to use proxy server while building the rootfs, use --setproxy option.

# for example,
$ sudo ./tools/cross/install_rootfs.sh aarch64 --setproxy="1.2.3.4:8080"
# or
$ sudo ./tools/cross/install_rootfs.sh aarch64 --setproxy="proxy.server.com:8888"

This will put apt proxy settings in rootfs/etc/apt/apt.conf.d/90proxy file for http, https and ftp
protocol.

2.6.2 Cross build for AARCH64

Install cross compilers

$ sudo apt-get install gcc-aarch64-linux-gnu g++-aarch64-linux-gnu

Give TARGET_ARCH variable to set the target architecture

$ CROSS_BUILD=1 TARGET_ARCH=aarch64 make
$ CROSS_BUILD=1 TARGET_ARCH=aarch64 make install

• supports armv7l and aarch64 for now

If you used ROOTFS_DIR to prepare in alternative folder, you should also give this to makefile.

$ CROSS_BUILD=1 ROOTFS_DIR=/home/user/rootfs/aarch64-xenial TARGET_ARCH=aarch64 make
$ CROSS_BUILD=1 ROOTFS_DIR=/home/user/rootfs/aarch64-xenial TARGET_ARCH=aarch64 make
→˓install

You can also omit the CROSS_BUILD=1 option if you explicitly pass ROOTFS_DIR. In that case, if the
TARGET_ARCH are differs from the hostarchitecture, the make script automatically applies CROSS_BUILD=1. So,
if you set ROOTFS_DIR as an environment variable, you can simply perform normal build and cross build as follows.

$ export ROOTFS_DIR=xxx
...
$ make # do normal build
$ TARGET_ARCH=aarch64 make # do cross build

Run test

To run and test the cross-compiled runtime, you need to copy the compiled output to the target device of the architecture
in which it is executable. Please refer to the following document for details on the test procedure. In the guide,
armv7l-linux.debug in path should be replaced by referring to your build result.

• Testing neural network model inference with a cross-build runtime
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2.7 How to Cross-build Runtime for Android

2.8 How to Cross-build Runtime for ARM

2.8.1 Prepare ARM Ubuntu RootFS

Install required packages

$ sudo apt-get install qemu qemu-user-static binfmt-support debootstrap

Use install_rootfs.sh script to prepare Root File System. You should have sudo

$ sudo ./tools/cross/install_rootfs.sh arm

• supports arm(default) and aarch64 architecutre for now

• supports focal(default), bionic, and jammy release

To see the options,

$ ./tools/cross/install_rootfs.sh -h

RootFS will be prepared at tools/cross/rootfs/arm or tools/cross/rootfs/aarch64 folder.

* CAUTION: The OS version of rootfs must match the OS version of execution target device. On the other hand,
you need to match the Ubuntu version of the development PC with the Ubuntu version of rootfs to be used for
cross-build. Otherwise, unexpected build errors may occur.

If you are using Ubuntu 20.04 LTS, select focal, if you are using Ubuntu 22.04 LTS, select jammy. You can check
your Ubuntu code name in the following way.

$ cat /etc/lsb-release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=22.04
DISTRIB_CODENAME=jammy
DISTRIB_DESCRIPTION="Ubuntu 22.04.3 LTS"

If a build error occurs because the version of the development system and the target system do not match, and if you
can’t replace your development system for any reason, you can consider cross-build using the docker image.

Prepare RootFS at alternative folder

Use ROOTFS_DIR to a full path to prepare at alternative path.

$ ROOTFS_DIR=/home/user/rootfs/arm-bionic sudo -E ./tools/cross/install_rootfs.sh arm

Using proxy

If you need to use proxy server while building the rootfs, use --setproxy option.

# for example,
$ sudo ./tools/cross/install_rootfs.sh arm --setproxy="1.2.3.4:8080"
# or
$ sudo ./tools/cross/install_rootfs.sh arm --setproxy="proxy.server.com:8888"
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This will put apt proxy settings in rootfs/etc/apt/apt.conf.d/90proxy file for http, https and ftp
protocol.

2.8.2 Install ARM Cross Toolchain

We recommend you have g++ >= 6.1 installed on your system because NN generated tests require it (c++14).

Ubuntu 20.04 LTS

On Ubuntu 20.04 LTS, you can install using apt-get.

Choose g++ version whatever you prefer: 9 (default) or 10. We are officially testing on default g++ version, so we
don’t confirm build on different version.

$ sudo apt-get install g++-{9,10}-arm-linux-gnueabihf

If you select specific version, update symbolic link for build toolchain.

Otherwise, you should set your custom cmake crossbuild toolchain. You can find cmake toolchain files in infra/
nnfw/cmake/buildtool/cross/.

$ update-alternatives --install /usr/bin/arm-linux-gnueabihf-gcc arm-linux-gnueabihf-
→˓gcc /usr/bin/arm-linux-gnueabihf-gcc-10 80 \

--slave /usr/bin/arm-linux-gnueabihf-g++ arm-linux-gnueabihf-g++ /usr/bin/arm-
→˓linux-gnueabihf-g++-10 \

--slave /usr/bin/arm-linux-gnueabihf-gcov arm-linux-gnueabihf-gcov /usr/bin/arm-
→˓linux-gnueabihf-gcov-10

Ubuntu 22.04 LTS

Same with Ubuntu 20.04 LTS. (except g++ version)

2.8.3 Build and install ARM Compute Library

Mostly you only need once of ACL (ARM Compute Library) build.

To build ACL, you need to install scons

$ sudo apt-get install scons

ACL source will be automatically installed in externals/ARMCOMPUTE when you build runtime without any
changes.

You can check ACL source information in infra/cmake/packages/ARMComputeSourceConfig.cmake

2.8.4 Cross build for ARM by using Makefile.template

Give TARGET_ARCH variable to set the target architecture.

If you used ROOTFS_DIR to prepare in alternative folder, you should also give this to makefile.
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$ CROSS_BUILD=1 TARGET_ARCH=armv7l make -f Makefile.template

# If ROOTFS_DIR is in alternative folder
$ ROOTFS_DIR=/path/to/your/rootfs/arm \
CROSS_BUILD=1 TARGET_ARCH=armv7l make

You can also omit the CROSS_BUILD=1 option if you explicitly pass ROOTFS_DIR. In that case, if the
TARGET_ARCH are differs from the hostarchitecture, the make script automatically applies CROSS_BUILD=1. So,
if you set ROOTFS_DIR as an environment variable, you can simply perform normal build and cross build as follows.

$ export ROOTFS_DIR=xxx
...
$ make -f Makefile.template # do normal build
$ TARGET_ARCH=armv7l make -f Makefile.template # do cross build

Makefile.template will pass crossbuild toolchain setting to cmake automatically by parsing variables.

Run test

To run and test the cross-compiled runtime, you need to install library packages and copy the compiled output to the
target device of the architecture in which it is executable.

1. Install hdf5 and boost library package

$ sudo apt install libhdf5-dev libboost-system-dev libboost-program-options-dev

1. Copy all artifacts under the ./Product/armv7l-linux.<BUILD_TYPE> folder to the target device,
Odroid-XU4 for example, as a whole.

$ ssh odroid mkdir -p one/Product
sjlee@odroid's password:
$ scp -rp ./Product/armv7l-linux.debug odroid:one/Product
sjlee@odroid's password:
FillFrom_runner
→˓ 100% 224KB 223.6KB/s 00:00
benchmark_nnapi.sh
→˓ 100% 7464 7.3KB/s 00:00
common.sh
→˓ 100% 2084 2.0KB/s 00:00
test_framework.sh
→˓ 100% 3154 3.1KB/s 00:00
test-driver.sh
...

1. Log in to the target device, go to the copied path, and reestore the symbolic link settings of the Product
directory.

$ ssh odroid
sjlee@odroid's password:
...
$ cd ~/one/Product
$ ln ${PWD}/armv7l-linux.debug/out out
$ cd ..
$ ls -la Product
drwxrwxr-x 5 sjlee sjlee 4096 Jun 4 20:55 armv7l-linux.debug
lrwxrwxrwx 1 sjlee sjlee 51 Jun 4 20:55 out -> /home/sjlee/one/Product/armv7l-
→˓linux.debug/out

(continues on next page)
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(continued from previous page)

Now you can test the compilation result in the same way as the native build. Please refer to the following document
for details on the test procedure.

• Testing neural network model inference using the runtime

2.9 How to Run Package

2.10 How to Make an Application with Runtime

2.11 How to Use API

2.12 How to Use NNAPI Binding

Runtime supports Android Neural Networks API as a frontend. We provide the whole NeuralNetworks.h imple-
mentation. Its source code is located at runtime/onert/frontend/nnapi.

So users can just use NN API in the same way as the official guide, but should watch the version of
NeuralNetworks.h. It may not be the latest. There is a copy of the file is located at runtime/
nnapi-header/include/NeuralNetworks.h.

2.13 How to Use NNFW API

2.13.1 Prepare nnpackage

Convert tensorflow pb file to nnpackage

Follow the compiler guide to generate nnpackge from tensorflow pb file

Convert tflite file to nnpackage

Please see model2nnpkg for converting from tflite model file.

2.13.2 Build app with NNFW API

Here are basic steps to build app with NNFW C API

1. Initialize nnfw_session

nnfw_session *session = nullptr;
nnfw_create_session(&session);

1. Load nnpackage

nnfw_load_model_from_file(session, nnpackage_path);
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1. (Optional) Assign a specific backend to operations

// Use 'acl_neon' backend for CONV_2D and 'cpu' for otherwise.
// Note that defalut backend is 'cpu'.
nnfw_set_op_backend(session, "CONV_2D", "acl_neon");

1. Compilation

// Compile model
nnfw_prepare(session);

1. Prepare Input/Output

// Prepare input. Here we just allocate dummy input arrays.
std::vector<float> input;
nnfw_tensorinfo ti;
nnfw_input_tensorinfo(session, 0, &ti); // get first input's info
uint32_t input_elements = num_elems(&ti);
input.resize(input_elements);
// TODO: Please add initialization for your input.
nnfw_set_input(session, 0, ti.dtype, input.data(), sizeof(float) * input_elements);

// Prepare output
std::vector<float> output;
nnfw_output_tensorinfo(session, 0, &ti); // get first output's info
uint32_t output_elements = num_elems(&ti);
output.resize(output_elements);
nnfw_set_output(session, 0, ti.dtype, output.data(), sizeof(float) * output_

→˓elements);

1. Inference

// Do inference
nnfw_run(session);

2.13.3 Run Inference with app on the target devices

reference app : minimal app

$ ./minimal path_to_nnpackage_directory

2.14 How to Use Specific Backend during Inference

ONE runtime has many ways to use specific backend during inference

2.14.1 Using NNFW API

nnfw_set_available_backends

• Multiple backends can be set and they must be separated by a semicolon (ex: “acl_cl;cpu”).

• For each backend string, libbackend_{backend}.so will be dynamically loaded during nnfw_prepare.

• Among the multiple backends, the 1st element is used as the default backend.
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nnfw_set_op_backend

• The backend for op has higher priority than available backends specified by nnfw_set_available_backends.

2.14.2 Using Environment Variable

1. BACKENDS

• Same as nnfw_set_available_backends

• Example

BACKENDS=cpu ./Product/out/bin/onert_run ...

2. OP_BACKEND_[OP_TYPE]

• Same as nnfw_set_op_backend

• Set backend for specific operator type

• Example

– Execute Conv2D operator on ruy backend and others on cpu backend

OP_BACKEND_Conv2D=ruy BACKENDS="cpu;ruy" ./Product/out/bin/onert_run ...

3. OP_BACKEND_MAP

• Set backend for specific operator by its index

• Format : <op_id>=<backend>;<op_id>=<backend>...

• Example

– Execute operator 10 on acl_cl backend and others on acl_neon backend

OP_BACKEND_MAP="10=acl_cl" BACKENDS="acl_neon;acl_cl" ./Product/out/bin/onert_run ...

2.15 How to Contribute

ONE always welcomes your contribution, but there are basic guidelines that you should follow in order to make your
contribution be accepted.

This document explains such guidelines for beginners.

2.15.1 General contribution guidelines

If you are not familiar with git or github, please visit here for basic understanding of git and github.
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2.15.2 How to create a Pull Request

This section explains the steps to create a pull request (PR).

1. Create an issue

Maintainers will accept your contribution only when it is well aligned with the roadmap and design principles
of ONE. So, it is optional, but recommended for contributors to create an issue and have a discussion with
maintainers before writing code.

2. Create a draft PR

Maintainers will accept your pull request only when it is reasonably small and focused. Sometimes, your
contribution may require huge and loosely-coupled changes. You should split your contribution into multiple
small, but focused pull requests in this case. Unfortunately, it is possible that maintainers reject your pull request
as it is hard for them to understand the intuition behind these changes. So, it is optional, but recommended for
contributors to present the full draft of your contribution and have a discussion with maintainers before creating
PR(s).

3. Create a commit

It is time to create a commit for submission once you are convinced that your contribution is ready to go. Please
include signed-off message at the end of commit message. If not, your pull request will be rejected by CI.

4. Check code format locally

ONE has its code formatting rules, and any pull request that violates these rules will be rejected by CI. So, it is
optional, but recommended for contributor to check code format locally before submission.

5. Create a PR

It is time to send a pull request. Please explain your intention via description. Maintainers will review your pull
request based on that description. Each pull request needs approval from at least two reviewers to be accepted.
Note that description should include at least four words. If not, your pull request will be rejected by CI.

6. Request review

It is recommended to assign reviewers yourself. Maintainers will honor your review request, and accept your
pull request only when

• Approved by 1+ reviewers

• 0 rejection(Request Changes)

• 0 pending review request

• All the reviewers in the list must approve your pull request

You can add/remove pending review requests in the middle of the review process. Maintainers (or reviewers)
could review your pull request even without explicit review request.

7. Update per feedback

Sometimes, maintainers (or reviewers) will request changes on your pull request. Please update your pull request
upon such feedbacks. These update commits will be squashed into the first commit of your pull request later.
Please do NOT include a sign-off message or write a full description for update commits.

2.16 How to Remote Debugging with Visual Studio Code

This document describes how to debug ONE runtime on arm devices using visual studio code.
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2.16.1 Setup build host

Install gdb-multiarch

1. Install gdb-multiarch

$ sudo apt install gdb-multiarch

Configure VS code

1. Install Native Debug extension on VS code

2. Setup GDB environment on VS code

• Debug -> Add configuration -> GDB: Connect to gdbserver

• Change configuration as below

– Change <TARGET_IP> to IP of your target

– The default port number for gdbserver is 2345. You can change this number.

– You can change executable configuration from tflite_run to other binaries you want to debug.

{
"version": "0.2.0",
"configurations": [

{
"type": "gdb",
"request": "attach",
"name": "Attach to gdbserver",
"gdbpath": "/usr/bin/gdb-multiarch",
"executable": "./Product/armv7l-linux.debug/out/bin/tflite_run",
"target": "<TARGET_IP>:2345",
"remote": true,
"printCalls": true,
"cwd": "${workspaceRoot}",
"valuesFormatting": "parseText"

}
]

}

2.16.2 Setup target device

Install gdbserver and debugging symbols

You need to setup a target device for remote debugging.

1. Install gdbserver

$ sudo apt install gdbserver

1. Install libc6-dbg and copy debugging symbols

$ sudo apt install libc6-dbg
$ sudo mkdir -p /lib/.debug
$ sudo ln -s /usr/lib/debug/lib/arm-linux-gnueabihf/ld-2.27.so /lib/.debug
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2.16.3 Run remote debugging

1. Start gdbserver on target

gdbserver --multi :<PORT> <BINARY_PATH> <EXECUTION_ARGUMENTS>

Example

gdbserver --multi :2345 Product/armv7l-linux.debug/out/bin/tflite_run ../models/slice_
→˓test.tflite

1. Connect to gdbserver using VS code

• Setup breakpoints on any code you want.

• Click F5 to start remote debugging.

• Program will execute and exit if no breakpoint exists.

2.16.4 Optional: Setup rootfs on build host

When debugging starts, gdb downloads shared libraries that one runtime uses from the target device. This process
makes gdb to wait for shared library download to finish for every debugging start.

To reduce shared library loading, you can setup an arm root file system on your build host and use it.

1. Create arm root file system

Following CrossBuildForArm to create an arm root file system.

You can use an arm root file system created for arm cross-compile.

1. Install libc6-dbg on arm root file system

<ROOTF_DIR> should point ARM root file system.

Default path is tools/cross/rootfs/arm folder.

$ sudo chroot <ROOTFS_DIR>
$ apt install libc6-dbg
$ exit

1. Create symbolic link of one runtime on arm rootfs

gdb will use source code folder at sysroot.

$ ln -s <ONE_DIR> <ROOTFS_DIR>/<ONE_DIR>

Example

$ ln -s /home/user/one /home/user/one/tools/cross/rootfs/arm/home/user/one/

1. Setup .gdbinit file on one folder

gdb will use <ROOTFS_DIR> to find arm related symbols.

set sysroot <ROOTFS_DIR>
set debug-file-directory <ROOTFS_DIR>/usr/lib/debug
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2.16.5 Troubleshooting

Unable to open ‘unordered_map.h’

If you are using docker to build one runtime, you should download and decompress gcc-linaro at /opt folder

wget https://releases.linaro.org/components/toolchain/binaries/6.3-2017.02/arm-linux-
→˓gnueabihf/gcc-linaro-6.3.1-2017.02-x86_64_arm-linux-gnueabihf.tar.xz -O gcc-hardfp.
→˓tar.xz
sudo tar -xf gcc-hardfp.tar.xz -C /opt/ && sudo rm -rf gcc-hardfp.tar.xz

Skip STL files

Step into (F11) will debug STL files such as unordered_map or vector.

To skip those files from debugging, you can add below line to .gdbinit file.

This function is supported on gdb versions >= 7.12.

skip -gfile /opt/gcc-linaro-6.3.1-2017.02-x86_64_arm-linux-gnueabihf/arm-linux-
→˓gnueabihf/include/c++/6.3.1/bits/*

2.17 How to Add a New Operation

2.17.1 Compiler

• How to introduce a new operation into compiler

2.17.2 Runtime

• How to introduce a new operation into runtime

2.18 How To Introduce a New Operation Into Compiler

2.19 How To Introduce a New Operation Into Runtime

ONE’s runtime has three main modules: core, frontend and backend. This document provides some lightweight
guidance about how to introduce a new operation into these modules to make onert support the operation.

2.19.1 Index

• How To Introduce a New Operation Into Runtime

– Index

– Core

– Frontend

* Loaders
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· Base Loader

· TFLite Loader

· Circle Loader

* NNAPI

– Backend

* ShapeFixer

· acl_cl

· acl_neon

· cpu

* KernelGenerator

· acl_cl

· acl_neon

· cpu

* ConstantInitializer (in some cases)

· cpu

– Samples (to be updated)

2.19.2 Core

This module has graph-based IR(intermediate representation). You have to add IR for the new operation.

1. Add name of new operation at Operations.lst

OP(Select)

1. Create a class for node of new operation in here

#include "ir/Operation.h"

namespace onert
{
namespace ir
{
namespace operation
{

class Select : public Operation
{
public:

enum Input
{
COND = 0,
INPUT1 = 1,
INPUT2 = 2

};

enum Output
(continues on next page)
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(continued from previous page)

{
OUTPUT = 0,

};

public:
Select(const OperandIndexSequence &inputs, const OperandIndexSequence &outputs);

public:
void accept(OperationVisitor &v) const override;
OpCode opcode() const final { return OpCode::Select; }

};

} // namespace operation
} // namespace ir
} // namespace onert

You can also define the class in other source file like below

#include "ir/operation/Select.h"

#include "ir/OperationVisitor.h"

namespace onert
{
namespace ir
{
namespace operation
{

void Select::accept(OperationVisitor &v) const { v.visit(*this); }

Select::Select(const OperandIndexSequence &inputs, const OperandIndexSequence &
→˓outputs)

: Operation{OperandConstraint::createExact(3u), inputs, outputs}
{
}

• Operations.Include.h

#include "ir/operation/Select.h"

1. Add to the OperationValidator to check if the node is valid.

• OperationValidator.h

void visit(const operation::Select &node) override;

• OperationValidator.cc

void OperationValidator::visit(const ir::operation::Select &node)
{

const auto output_index{node.getOutputs().at(ir::operation::Select::Output::OUTPUT)}
→˓;
const auto cond_index{node.getInputs().at(ir::operation::Select::Input::COND)};
const auto input1_index{node.getInputs().at(ir::operation::Select::Input::INPUT1)};
const auto input2_index{node.getInputs().at(ir::operation::Select::Input::INPUT2)};

(continues on next page)
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(continued from previous page)

UNUSED_RELEASE(output_index);
UNUSED_RELEASE(cond_index);
UNUSED_RELEASE(input1_index);
UNUSED_RELEASE(input2_index);

const auto output_type = _ctx.at(output_index).typeInfo();
const auto cond_type = _ctx.at(cond_index).typeInfo();
const auto input1_type = _ctx.at(input1_index).typeInfo();
const auto input2_type = _ctx.at(input2_index).typeInfo();

UNUSED_RELEASE(output_type);
UNUSED_RELEASE(cond_type);
UNUSED_RELEASE(input1_type);
UNUSED_RELEASE(input2_type);

assert(cond_type.type() == ir::DataType::BOOL8);
assert(output_type.type() == ir::DataType::FLOAT32 || output_type.type() ==

→˓ir::DataType::INT32 ||
output_type.type() == ir::DataType::QUANT8_ASYMM);

assert(output_type.type() == input1_type.type());
assert(output_type.type() == input2_type.type());

const auto output_shape = _ctx.at(output_index).shape();
const auto cond_shape = _ctx.at(cond_index).shape();
const auto input1_shape = _ctx.at(input1_index).shape();
const auto input2_shape = _ctx.at(input2_index).shape();

UNUSED_RELEASE(output_shape);
UNUSED_RELEASE(cond_shape);
UNUSED_RELEASE(input1_shape);
UNUSED_RELEASE(input2_shape);

assert(output_shape == input1_shape);
assert(cond_shape == input1_shape);
assert(input2_shape == input1_shape);

}

1. Add to the Dumper to dump IR information of new operation.

• Dumper.cc

void Dumper::visit(const Select &node)
{

VERBOSE(LIR) << "* Select" << std::endl;
VERBOSE(LIR) << " - Inputs : Cond(" << node.getInputs().at(Select::Input::COND).

→˓value()
<< ") Input1" << node.getInputs().at(Select::Input::INPUT1).value() <<

→˓") Input2"
<< node.getInputs().at(Select::Input::INPUT2).value() << ")" <<

→˓std::endl;
VERBOSE(LIR) << " - Output : Output(" << node.getOutputs().

→˓at(Select::Output::OUTPUT).value()
<< ")" << std::endl;

}

1. Add code for shape inference

• ONE runtime tries to calculate shapes and allocate memory during compilation time. For some calculations
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of output shapes that cannot be done during compilation time, ONE runtime will calculate shapes and allocate
memory during execution time.

• Calculation of shapes during compilation time is called static shape inference and calculation of shapes during
execution time is called dynamic shape inference.

• StaticShapeInferer.h

void visit(const ir::operation::Select &op) override;

• StaticShapeInferer.cc

void StaticShapeInferer::visit(const ir::operation::Select &op)
{

const auto input_cond_idx{op.getInputs().
→˓at(ir::operation::Select::Input::CONDITION)};
const auto &input_cond = _operands.at(input_cond_idx);

const auto &input_true = ...
const auto &input_false = ...
ir::Operand &output = ...

// Select output shpae
ir::Shape new_shape = shape_inference::inferSelectShape(

input_cond.info().shape(), input_true.info().shape(), input_false.info().
→˓shape());
output.info().shape(new_shape);

}

• DynamicShapeInference.h

void visit(const ir::operation::Select &op) override;

• DynamicShapeInference.cc

void DynamicShapeInferer::visit(const ir::operation::Select &op)
{

const auto input_cond_idx = op.getInputs().
→˓at(ir::operation::Select::Input::CONDITION);
const auto &input_cond = _tensor_registry->getITensor(input_cond_idx);

const auto &input_true = ...
const auto &input_false = ...
auto output = ...

if ((!input_cond->is_dynamic()) && (!input_true->is_dynamic()) && (!input_false->is_
→˓dynamic()))
{
return;

}

auto input_cond_shape = input_cond->getShape();
auto input_true_shape = input_true->getShape();
auto input_false_shape = input_false->getShape();

// Select output shpae
ir::Shape new_shape =

shape_inference::inferSelectShape(input_cond_shape, input_true_shape, input_
→˓false_shape);

(continues on next page)
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(continued from previous page)

output->applyShape(new_shape);
}

2.19.3 Frontend

This module generates IR from a model. There are two kinds of frontend: Loader and NNAPI. First, Loader loads
a model file and generates IR from it. Second, NNAPI generates IR from a model set via Neural Networks API of
android

Loaders

Base Loader

This is where the common parts of loaders are implemented.

1. Add to base_loader to load new operation and to generate IR from it

• base_loader

case BuiltinOperator::BuiltinOperator_SELECT:
loadSelect(op);
return;

template <typename LoaderDomain, typename SpecificLoader>
void BaseLoader<LoaderDomain, SpecificLoader>::loadSelect(const Operator *op)
{

ir::OperandIndexSequence inputs;
ir::OperandIndexSequence outputs;

loadOperationIO(op, inputs, outputs);

std::unique_ptr<ir::Operation> new_op{new ir::operation::Select{inputs, outputs}};
_graph.addOperation(std::move(new_op));

}

TFLite Loader

This loads a tflite file. If you want new operation to be loaded on only TFLite Loader, you only need to implement
loading the operation here.

Circle Loader

This loads a circle file generated by the compiler. If you want new operation to be loaded on only Circle Loader, you
only need to implement loading the operation here.

NNAPI

1. Add to the OperationFactory to generate IR of new operation
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• OperationFactory

_map[ANEURALNETWORKS_SELECT] = [](const OperationFactory::Param &init_param,
→˓Operands &) {

assert(init_param.input_count == 3 && init_param.output_count == 1);

OperandIndexSequence outputs{init_param.outputs[0]};

// Each input should be interpreted as follows:
//
// 0 -> Cond Tensor Index
// 1 -> Input1 Tensor Index
// 2 -> Input2 Tensor Index
OperandIndexSequence inputs;
for (uint32_t n = 0; n < init_param.input_count; ++n)
{

inputs.append(OperandIndex{init_param.inputs[n]});
}

return new operation::Select{inputs, outputs};
};

1. If you want that NNAPI supports new operation of TFLite’s model, you need to update the things related to the
operation in nnapi_delegate like below

case tflite::BuiltinOperator_SELECT:
nnapi_version = 12; // require NNAPI 1.2
nn_op_type = ANEURALNETWORKS_SELECT;
break;

2.19.4 Backend

This module generates kernels and tensors of backend such as ComputeLibrary from generated graph-based IR. For
this, the runtime fairly works on it internally. But this is not enough because of dependence on backend. So, there are
several components that require additional implementation on each backend.

ShapeFixer

Even for tensors of the same operation, the shape required for each backend can be different. Therefore, this component
modifies and fixes shape of tensors of the backend.

acl_cl

The kernel of the ACL for the Add operation needs to match the same rank to support the broadcast.

• ShapeFixer.h

void visit(const ir::operation::Add &) override;

• ShapeFixer.cc

void ShapeFixer::visit(const ir::operation::Add &node)
{

const auto lhs_index{node.getInputs().at(ir::operation::Add::Input::LHS)};

(continues on next page)
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(continued from previous page)

const auto rhs_index{node.getInputs().at(ir::operation::Add::Input::RHS)};

if (!(_ctx.at(lhs_index).shape() == _ctx.at(rhs_index).shape()))
{
const auto broadcast_rank =

std::max(_ctx.at(lhs_index).shape().rank(), _ctx.at(rhs_index).shape().
→˓rank());

const_cast<ir::Shape &>(_ctx.at(lhs_index).shape()).extendRank(broadcast_rank);
const_cast<ir::Shape &>(_ctx.at(rhs_index).shape()).extendRank(broadcast_rank);

}
}

acl_neon

Same implementation as acl_cl is required.

cpu

This backend doesn’t usually require a change of shape.

• ShapeFixer.h

void visit(const ir::operation::Select &) override;

• ShapeFixer.cc

void ShapeFixer::visit(const ir::operation::Select &) { /* DO NOTHING */}

KernelGenerator

This component generates kernels of backend. You have to generate kernel of new operation. And then append it to
execution builder. You can obtain information of the node from IR and necessary tensors from tensor builder.

acl_cl

• KernelGenerator.h

void visit(const ir::operation::Select &) override;

• KernelGenerator.cc

void KernelGenerator::visit(const ir::operation::Select &node)
{

const auto output_index{node.getOutputs().at(ir::operation::Select::Output::OUTPUT)}
→˓;
const auto cond_index{node.getInputs().at(ir::operation::Select::Input::COND)};
const auto input1_index{node.getInputs().at(ir::operation::Select::Input::INPUT1)};
const auto input2_index{node.getInputs().at(ir::operation::Select::Input::INPUT2)};

auto output_alloc = _tensor_builder->at(output_index).get();

(continues on next page)
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(continued from previous page)

auto cond_alloc = _tensor_builder->at(cond_index).get();
auto input1_alloc = _tensor_builder->at(input1_index).get();
auto input2_alloc = _tensor_builder->at(input2_index).get();

auto fn = std::make_unique<::arm_compute::CLSelect>();

fn->configure(cond_alloc->handle(), input1_alloc->handle(), input2_alloc->handle(),
output_alloc->handle());

auto acl_fn = asAclFunction(std::move(fn));

_execution_builder->append(std::move(acl_fn));
}

acl_neon

Similar implementation as acl_cl is required.

cpu

• KernelGenerator.h

void visit(const ir::operation::Select &) override;

• KernelGenerator.cc

void KernelGenerator::visit(const ir::operation::Select &node)
{

const auto output_index{node.getOutputs().at(0)};
const auto condition_index{node.getInputs().

→˓at(ir::operation::Select::Input::CONDITION)};
const auto true_index{node.getInputs().at(ir::operation::Select::Input::INPUT_TRUE)}

→˓;
const auto false_index{node.getInputs().at(ir::operation::Select::Input::INPUT_

→˓FALSE)};

auto output_tensor = _tensor_reg->getPortableTensor(output_index);
auto condition_tensor = _tensor_reg->getPortableTensor(condition_index);
auto true_tensor = _tensor_reg->getPortableTensor(true_index);
auto false_tensor = _tensor_reg->getPortableTensor(false_index);

auto fn = std::make_unique<ops::SelectLayer>();

fn->configure(condition_tensor, true_tensor, false_tensor, output_tensor);

_return_fn = std::move(fn);
}

ConstantInitializer (in some cases)

This component registers function initializing constant tensors and initialize constant tensor layer. Most tensors will
be automatically registered internally. And there are some exceptions.
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cpu

• ConstantInitializer.h

void visit(const ir::operation::Conv2D &) override;

• ConstantInitializer.cc

void ConstantInitializer::visit(const ir::operation::Conv2D &node)
{

const auto &kernel_index = node.getInputs().at(ir::operation::Conv2D::KERNEL);
const auto &kernel_obj = _operands.at(kernel_index);
registerCopyInitializer(kernel_index, kernel_obj);

const auto &bias_index = node.getInputs().at(ir::operation::Conv2D::BIAS);
const auto &bias_obj = _operands.at(bias_index);
registerCopyInitializer(bias_index, bias_obj);

}

2.19.5 Samples (to be updated)

• Select operation

– Simple explanation : Output[i] = Condition[i] ? input1[i] : input2[i]

– PR : https://github.com/Samsung/ONE/pull/XXX
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CHAPTER 3

Runtime

3.1 API

3.1.1 Runtime Layered Architecture

Here is a figure of runtime layered architecture.

Layered
Architecture

There are three parts - Frontend, Core and Backend. Core works with Frontend and Backend API. Frontend gets user
inputs(neural networks models) and Backend does the actual computation.
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3.1.2 Frontend API

Frontend API is about from creation/loading the model and

Runtime supports two (frontend) APIs - NN API and NNFW API.

NN API

NN API stands for Android Neural Networks API. It is part of Android Open Source Project and we provide a binding
between NN API and One Runtime.

For usage, refer to Howto : NN API.

NNFW API

NNFW API is ONE’s own API. It supports loading models from NN Packages. As it is our own API, It can do most of
functionalities that One Runtime offers. Representatively, it provides functions for execution with multiple backends.

For usage, refer to Howto : NNFW API.

3.1.3 Backend API

Backend API enables anyone to extend the runtime in terms of operation computation and memory management.

For detailed descriptions, refer to Backend API.

3.2 Core

Runtime Core is a compilation/execution engine for neural network models.

3.2.1 Modules

Runtime Core has four modules. These are namespaces as well as directory names in /runtime/onert/core/
src/.

• ir stands for Intermediate Representation which contains Neural Network Graph data structures

• compiler converts IR to an executable format

• exec is an execution module which is the result of a compilation

• backend is an interface for memory management for operands and actual calculation of operations

Module ir

This module contains data structures of pure Neural Network models. The models from NN Packages or NN API are
converted to these structures.

• Subgraphs is the entire neural network model which is a set of subgraphs

• Subgraph consists of operands and operations

• Operand (a.k.a. Tensor) has a shape, data type, data and references to operations
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• Operation (a.k.a. Operator) has operation type, params, and references to operands

Operand and Operation are nodes of the graph, and the reference relationship between them is the edges of the
graph.

Subgraphs represents the whole model. A model can have more than one Subgraph to support control flow
operations. Those operations make calls to another subgraph and when the execution on another subgraph is done it
gets back to previous subgraph execution with returned operands.

All graphs are a DAG so once model inputs are given we can run it in topological order.

Here’s a figure of how those data structures are organized.

Core

Module compiler

Compiler is the main class of this module. Everything starts from it.

What it does is making models executable. It schedules execution order and assigns a backend for each operation.
Here are major phases of compilation.

1. Lowering

In Lowering, Compiler assigns a backend for each operation. It means that the operation will be run with the
assigned backend’s kernel.

There is a scheduler that allows the user to manually specify backends via compiler options. There is another scheduler
that automatically assigns backends based on profile information measured in advance and saved.

2. Tensor Registration

Each backend manages its tensors. In this phase, operand informations get registered to the corresponding backend.
This will be used in generating tensor objects.
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Q. What are the differences between ‘operand’ and ‘tensor’?

In ONE runtime, ‘operand’ refers to an operand in a neural network model. While ‘tensor’ includes all ‘operand’ info
plus actual execution info like actual buffer pointer. In short, ‘operand’ is for ir, ‘tensor’ is for backend.

3. Linearization (Linear Executor Only)

Linearization means sorting operations in topological order. It saves execution time since it is not needed to resolve
the next available operations after every operation at execution time.

It also makes plans for tensor memory. It can save some memory space by reusing other operands’ space that does
not overlap lifetime. All allocations are done at compile time (after 4. Kernel Generation) which saves execution time
too.

4. Kernel Generation

‘kernel’ here means an implementation of the actual calculation of an operation.

A backend is assigned for each operation. In this phase, a kernel for each operation is generated.

Let’s say we have some functions written in a certain programming language. Then its compiler compiles each function
into a chunk of assembly. Here ‘function’ is like ‘operation’ and ‘assembly’ is like ‘kernel’.

5. Create Executor

With generated tensors and kernels, the compiler creates executor objects. There are 3 types of executors are supported
- Linear, Dataflow, and Parallel. Linear executor is the default executor and Dataflow Executor and Parallel Executor
are experimental.

For more about executors, please refer to Executors document.

Module exec

exec stands for ‘execution’. As a result of the compilation, Execution class is created. This class manages the
actual execution of the model inference. Here is a typical usage of using this class.

1. Resize input size if needed

2. Provide input and output buffers

3. Run the inference in either synchronous/asynchronous mode

4. Check out the results which are stored in output buffers provided earlier

Module backend

Backends are plugins and they are loaded dynamically(via dlopen). So this module is a set of interface classes
for backend implementation. compiler can compile with a variety of backends without knowing specific backend
implementation.

Backend interface classes are mostly about memory management and kernel generation. For more, please refer to
Backend API document.
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3.3 Controlflow Operations

We call If and While operations “Controlflow operations”. These operations are different from the others. They
are not for computing data, they are used to invoke another subgraph and return back which is to make condi-
tional/iterations work in dataflow models.

3.3.1 Defining controlflow operations

As we use Tensorflow Lite schema(or Circle which is based on TF Lite), the runtime follows the way TF Lite does.
The details are stated in Control Flow in TensorFlow Lite RFC document.

Controlflow operations from NN API is not yet supported. But we expect that it can be enabled in the similar way.

3.3.2 Implementation

Graph representation

onert internally has its representation for controlflow operations and subgraphs. It is pretty much straightforward as
it is pretty much isomorphic with the schema. The onert’s in-memory model contains multiple subgraphs and the
controlflow operations have same parameters(subgraph indices) just like TF Lite schema has.

Execution

controlflow backend is a built-in backend to support these controlflow operations. This backend is special as it
has access to onert core’s executor manager(ExecutorMap) so it can invoke/return a subgraph. This backend has
implementation for If and While operation and they make use of the access to executor manager.

An Executor has two different ways to execute depending on if it is the initial execution or invoking a subgraph
from a controlflow operation.

• Executing the primary subgraph

– Pass user-given tensors as the subgraph inputs and outputs

• Executing a subgraph for controlflow operations

– Pass controlflow operation inputs tensors as the subgraph inputs

– Pass the subgraph outputs as controlflow operation outputs

Kernel Implementation

Here is brief explanation what the kernels do, which is quoted from Control Flow in TensorFlow Lite.

• If : Check the condition input and invoke one of the 2 subgraphs.

• While :

– Invoke the condition subgraph. Break out the loop if result is false.

– Invoke the body subgraph, use the output as the input of the next iteration.

Invoking a subgraph needs to pass the operation’s inputs to the subgraph inputs. And Returning back needs to pass the
subgraph outputs to the operation outputs.
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When invoking a subgraph and returning back, the current kernel implementation performs literally copy all the
subgraph inputs and outputs. This is going to be optimized to minimize redundant copies.

3.4 Executors

Executor(IExecutor) is a execution engine of a subgraph that can execute inference for the subgraph. It is the result
of Subgraph compilation. If we would compare it with most of common programming language tools, it is just like
an interpreter with code to execute.

3.4.1 Understanding models

We can think of a NNPackage model as a set of tasks with dependencies. In other words, it is a form of DAG(more
precisely, it is a set of DAGs as we need multiple subgraphs to support control flow operations). And that is exactly
the same concept with Dataflow programming.

That is, there are some input tensors that must be ready to run a operation. And the execution must be done in
topological order. Here’s the workflow for execution.

1. User gives model input tensors

2. Start execution

3. Perform the operations that are ready

4. Mark the tensors as ready that are made from the operations that was just performed

5. Check if there are some operations ready

1. If yes, Go to 3

2. Otherwise, Finish execution

6. User uses data of model output tensors

We have 3 different types of executors in our codebase and they all are based on the explation above. However only
LinearExecutor is official and the other two are experimental.

3.4.2 Linear Executor

LinearExecutor is the main executor. As we know the model to run and the model graph does not change
at runtime, we do not have to do step 3-5 above at runtime. During the compilation for Linear Executor, it sorts
operations in topological order so we can just execute in that fixed order which means that it cannot perform the
operations in parallel.

If the tensors are static, it also can analyze the lifetimes of the tensors and pre-allocate tensor memory with reusing
memory between the tensors whose lifetimes do not overlap.

3.4.3 Dataflow Executor (experimental)

Unlike LinearExecutor, DataflowExecutor does step 3-5 at runtime. By doing it we can know which
operations are available at a specific point. However this executor still executes the operations one at a time. Just
choose any operation that is ready then execute. And wait for it to finish then repeat that. So there may be no advantage
compared to LinearExecutor but DataflowExecutor is the parent class of ParallelExecutor. And
DataflowExecutor can be used for profiling executions for the heterogeneous scheduler.
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3.4.4 Parallel Executor (experimental)

Just like DataflowExecutor, ParallelExecutor does step 3-5 at runtime. One big difference is that it creates
a ThreadPool for each backend for parallel execution(ThreadPool is supposed to have multiple threads, however
for now, it can have only one thread). As we know that there may be multiple operations ready to execute, and those
can be executed in different backends at the same time which could lead some performance gain.

3.5 Heterogeneous Execution

A big feature of ONE Runtime is that it can perform inference for a neural network model with different back-
ends(computation libraries). This is called “Heterogenous Execution”.

A neural network model consists of operations and each operation can be computed by a variety of backends. Then
we can choose the faster one for that operation for computation. Let’s say we have a model that has two operations in
sequence.

Add-Conv model

And say we have two backends A and B. A has a faster kernel for Add and B has a faster kernel for Conv2D. Then it
might be the best choice to run Add with A and run Conv2D with B.

Here is another case. Let’s say we have a model that is not sequential so there are multiple operations can be run at
the same time.
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Add-3Conv model

Say we have 3 backends that are based on CPU, GPU and NPU(Neural Processing Unit) respectively. After executing
Add, 3 Conv2D operations are ready to run. We may utilize those backends with Parallel Executor (experimental).
For this case we may get performance gain regardless of kernels’ speed as those are run in parallel independently.

3.5.1 Graph Transformation

Unfortunately it is not that simple to get performance gain. As each backend has its own memory management module,
a copy must be done between backend boundaries. Plus, it may require layout changes so “Permute” operations are
added from PermutationInsertionPass. This process is done from Lowering phase of compilation.

Here is an example of that. Let’s say we have assigned different backends for Add and Conv2D. So a Permute operation
is inserted between them.
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Add-Conv model

This means that choosing a backend for an operation should be careful. We must take Permute(copy) overhead into
account. That cost could dominate actual computation’s so choosing the fastest one is not always the best choice.

Sometime later, we are going to introduce a concept of compatible backends and they can share their tensors freely.
So for those cases, Permute operations are not inserted.

3.5.2 Automatic Scheduling

Now we know that it could be useful to have a lot of backends, but one might wonder how we can schedule backends
effectively. When a model is large, it is not trivial to do it manually by a user.

There is a profiling-based automatic scheduler(experimental). It first runs every operation in sequence with every
backend it has. And it records the duration of the execution for each. Then that data can be used to schedule. The
scheduler assigns backends according to a certain algorithm with the given data. And the user can execute it with
Parallel Scheduler.

There were actually some performance gain with the model Inception V3 and two backends - acl_neon(GPU) and
acl_cl(GPU). Note that this model contains operations that can be run at the same time.

3.6 Backend API

Backend API is defined by One Runtime. It is about actual computation of operations and memory management for
operands. In order to allow different kinds of computation units or libraries, Backend API is exposed to support user
defined operation kernels and memory manager. It contains several C++ interface classes which are subject to change.
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3.6.1 How backends are loaded

When a backend ID is given to a session, the compiler module tries to load libbackend_{BACKEND_ID}.so. If
it is successful, the runtime looks up for C API functions in it, and make use of those.

3.6.2 C and C++ API

C API

We have 2 C API functions which are used as the entrypoint and the exitpoint. Here are the definitions of those.

onert::backend::Backend *onert_backend_create();
void onert_backend_destroy(onert::backend::Backend *backend);

What they do is creating a C++ object and destroying it, respectively. These two functions are the only ones that are
dynamically resolved at runtime.

C++ API

NOTE C++ API is subject to change so it may change in every release

C API above is just an entrypoint and it delegates core stuff to C++ API.

Here are major classes are described below. One must implement these classes(and some more classes) to create a
backend.

• Backend : Responsible to create a backend context which is a set of backend components

• BackendContext : Holds data for the current session and also responsible to create tensor objects and kernels

– BackendContext::genTensors : Create tensor objects

– BackendContext::genKernels : Create kernels

• IConfig : Configurations and miscellaneous stuff (not session based, global)

• ITensorRegistry : A set of tensor(ITensor) objects that are used by the current backend

Please refer to each class document for details. You may refer to Bundle Backends for actual implementation samples.

3.6.3 Provided Backend Implementations

We provide some backends along with the runtime. There is the special backend builtin which is part of runtime
core, and some bundle backends which are baseline backends and samples of backend implementation.

3.6.4 builtin Backend

builtin is a special backend that is always loaded(statically linked, part of runtime core). It is implemented just
like other backends, but there are some things that it does exclusively.

• Has kernels for If, While and Permute operations (Kernels from other backends are never be used)

• The runtime core directly creates builtin’s tensor objects to accept user-given input and output buffers

• The runtime core gives the executor context to builtin backend which allows control flow ops can change
execution flow properly
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3.6.5 Bundle Backends

Without actual implmentation of backends, we cannot run any models. So we provide 3 bundle backends which
support dozens of operations.

cpu

This backend is written in C++ and all the computation is done with CPU only.

acl_neon

acl_neon is a backend that is an adaptation layer of ARM ComputeLibrary NE(NEON) part. So it basically only
uses CPU too, but worksonly on ARM.

acl_cl

acl_cl is a backend that is an adaptation layer of ARM ComputeLibrary CL(OpenCL) part. OpenCL sup-
port(libOpenCL.so) is also necessary in the running environment to be able to use this backend. Also, it works
only on ARM.

3.7 Compute

compute directory is for the libraries for actual computation of neural network operations. These libraries are used
by backends. Currently we have two libraries.

3.7.1 ARMComputeEx

It is an extension of ARM ComputeLibrary, in order to support some operations that are not yet supported by Com-
puteLibrary. It is used by acl_cl and acl_neon backends.

The code structure looks just like ComputeLibrary’s. Some of the code could be copied from the latest version of
ComputeLibrary to support some operations quickly when those are not included in the latest version yet.

3.7.2 cker

“cker” stands for Cpu KERnel. It is a port of Tensorflow lite’s operation kernels and possibly there are some own
code. It is used by cpu backend.

3.8 Supported Operations and backend

As of 2021-03-08
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3.8.1 Raw-data format (float32, int32, boolean, etc)

3.8.2 Quantization format (uint8 asymmetric)

3.8.3 Quantization format (int8)

54 Chapter 3. Runtime



CHAPTER 4

Compiler

4.1 Frontend

4.1.1 caffe2circle

caffe2circle is a Caffe-to-Circle model converter.

4.1.2 circle2circle

circle2circle provides Circle optimizations as executable tool

4.1.3 enco

enco is a tool which translates a NN model into a C++ source code that implements the following functions:

struct Network;

Network *Network_construct();
void Network_destruct(Network *net);

unsigned Network_input_count(const Network *);
const char *Network_input_name(const Network *, unsigned n);
unsigned Network_input_rank(const Network *, unsigned n);
unsigned Network_input_dim(const Network *, unsigned n, unsigned axis);
void Network_input_bind(Network *net, unsigned n, const void *ptr, unsigned len);

unsigned Network_output_count(const Network *net);
const char *Network_output_name(const Network *, unsigned n);
unsigned Network_output_rank(const Network *, unsigned n);
unsigned Network_output_dim(const Network *, unsigned n, unsigned axis);
void Network_output_bind(Network *net, unsigned n, void *ptr, unsigned len);

(continues on next page)
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(continued from previous page)

void Network_invoke(Network *net);

Generated C++ code internally uses Android NN API for acceleration.

4.1.4 nnc

Neural Network Compiler

DESCRIPTION

nnc is a neural network compiler that transforms neural networks of various formats into source or machine code.

At this moment only two NN are supported (MobileNet and InceptionV3) in Tensorflow Lite or Caffe
format.

SYNOPSIS

nnc OPTIONS

OPTIONS

--help, -h - print usage and exit
--caffe - treat input file as Caffe model
--tflite - treat input file as Tensor Flow Lite model
--target - select target language to emit for given architecture.

Valid values are 'x86-c++', 'interpreter'
--nnmodel, -m - specify input file with NN model
--output, -o - specify name for output files
--output-dir, -d - specify directory for output files
--input-model-data - interpreter option: specify file with neural network

→˓input data.
This file contains array of floats in binary form

--input-node - interpreter option: set input node in Computational
→˓Graph

--output-node - interpreter option: set output node in Computational
→˓Graph

USAGE

Assuming that user has already installed nnc as follows:

$ cmake <path_to_nnc_sources> -DCMAKE_INSTALL_PREFIX=<path_to_install>
$ make all && make install

Also assuming that we have tflite model (for example inceptionv3.tflite)

1. Running nnc in interpreter mode:
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<path_to_install>/bin/nnc \
--nnmodel inceptionv3.tflite \
--target interpreter \
--input-model-data data.file \
--input-node input --output-node output

2. Running to generate C/C++ source code:

<path_to_install>/bin/nnc \
--nnmodel inceptionv3.tflite \
--target x86-c++ \
--output inception \
--output-dir output_dir

4.1.5 onnx2circle

onnx2circle is a ONNX-to-Circle model converter.

4.1.6 tf2circle

tf2circle is a TensorFlow-to-Circle model converter.

4.1.7 tf2nnpkg

4.1.8 tf2tflite

tf2tflite is a TensorFlow-to-TensorFlow Lite model converter.

4.1.9 tf2tfliteV2

tf2tfliteV2 is a TensorFlow to TensorFlow Lite model Converter.

Where does V2 come from?

Even though we alreay have tf2tflite, we cannot cover all opeartors in TensorFlow. To expand coverage, we introduce
tf2tfliteV2 which uses TensorFlow Lite Converter(by Google) internally.

Prerequisite

• Frozen graph from TensorFlow 1.13.1 in binary(*.pb) or text(*.pbtxt) format

• Desired version of TensorFlow(You can use python virtualenv, docker, etc.)

Example

python tf2tfliteV2.py \
> --v1 \
> -i frozen_graph.pb -o converted.tflite
> -I model_inputs -O model_outputs
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python tf2tfliteV2.py \
> --v1 \
> --input_path=frozen_graph.pb \
> --output_path=converted.tflite \
> --input_arrays=model_inputs \
> --output_arrays=model_outputs

python tf2tfliteV2.py \
> --v2 \
> --input_path=frozen_graph.pbtxt \
> --output_path=converted.tflite \
> --input_arrays=model_inputs \
> --output_arrays=model_outputs

python tf2tfliteV2.py \
> --v2 \
> --input_path=multiple_output_graph.pb \
> --output_path=converted.tflite \
> --input_arrays=model_inputs \
> --output_arrays=output,output:1,output:2

optional argument

-h, --help show this help message and exit
--v1 Use TensorFlow Lite Converter 1.x
--v2 Use TensorFlow Lite Converter 2.x
--graph_def Use graph def file(default)
--saved_model Use saved model
--keras_model Use keras model
-i INPUT_PATH, --input_path INPUT_PATH

Full filepath of the input file.
-o OUTPUT_PATH, --output_path OUTPUT_PATH

Full filepath of the output file.
-I INPUT_ARRAYS, --input_arrays INPUT_ARRAYS

Names of the input arrays, comma-separated.
-s INPUT_SHAPES, --input_shapes INPUT_SHAPES

Shapes corresponding to --input_arrays, colon-
separated.(ex:"1,4,4,3:1,20,20,3")

-O OUTPUT_ARRAYS, --output_arrays OUTPUT_ARRAYS
Names of the output arrays, comma-separated.

4.1.10 tflite2circle

tflite2circle is a Tensorflow Lite to Circle model converter.

Usage

Provide tflite file input path and circle file output path as a parameter to convert.

$ tflite2circle in.tflite out.circle
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4.2 Middleend

4.2.1 exo

exo includes loco-to-T/F Lite exporter (as a library).

How to add a new TFL node

1. Add a new TFL node into TFLNodes.lst and TFLNodes.h

2. Define a knob in Knob.lst if you need a knob.

3. Add appropriate methods in TFLShapeInferenceRule.cpp and TFLTypeInferenceRule.cpp

4. Add a new converter under Conversion directory

5. Add an appropriate method in OperationExporter.cpp

6. Register the converter into Convert.cpp

4.2.2 locoex

locoex is an extention of loco. Classes with COp prefix enables Custom Operation. In this version, a custom operation
means one of the following:

1. an op that is supported by Tensorflow but not supported both by the moco and the onert

2. an op that is not supported by Tensorflow, moco, and the onert

COpCall node will represent IR entity that calls custom operations and kernels.

4.2.3 logo

logo provides loco General Graph Passes for Transformation and Optimization

4.2.4 logo-core

logo-core provides loco General Graph Pass Core for Transformation and Optimization

4.2.5 mir2loco

4.2.6 moco-tf

moco-tf translates a TensorFlow model into loco

Purpose

moco-tf is to convert TensorFlow generated model file to in-memory loco IR Graph.
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How to use

#include <moco/tf/Frontend.h>

...

::moco::tf::Frontend moco;

std::string pb_path = "path_to_pb_file_to_load";

auto loco_graph = moco.load(sig, pb_path, ::moco::tf::Frontend::FileType::Binary);

Dependency

Please refer requires.cmake for dependant modules.

Naming rules

TensorFlow node names

Use REGISTER_OP argument used in TensorFlow source core folder.

cd tensorflow/core
grep -Rn "REGISTER_OP"

To see single Op, Conv2D for example

cd tensorflow/core
grep -Rn "REGISTER_OP" | grep "Conv2D"

Names related with TensorFlow nodes

Like GraphBuilder and Canonicalization, TensorFlow node names can be used as prefix or suffix.

• Conv2DGraphBuilder

• Conv2DCanonicalizier

TensorFlow Dialect IR

Use TF prefix with TensorFlow Dialect node names

• TFAvgPool

• TFConv2D

This document outlines how to express each TensorFlow operation on top of loco

CAUTION All the python examples below are written in Python 3 with TensorFlow v1.13.

DISCLAIMER loco does not support named values, but all the below loco examples assign “name” to each value to
make it easy to read.
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4.2.7 Placeholder

Placeholder in TensorFlow corresponds to Pull in loco.

Python:

import tensorflow as tf
input = tf.placeholder(dtype=tf.float32, shape=[3, 4], name='input')
print(tf.get_default_graph().as_graph_def())

API reference: tf.placeholder

TensorFlow

node {
name: "input"
op: "Placeholder"
attr {
key: "dtype"
value { type: DT_FLOAT }

}
attr {
key: "shape"
value {

shape {
dim { size: 3 }
dim { size: 4 }

}
}

}
}

loco:

%input = Pull(dtype: FLOAT32, shape: [3, 4])
Push(%input)

4.2.8 Identity

Identity in TensorFlow corresponds to Forward in loco.

Python:

import tensorflow as tf
input = tf.placeholder(dtype=tf.float32, shape=[3, 4])
ident = tf.identity(input)
print(tf.get_default_graph().as_graph_def())

API reference: tf.identity

TensorFlow:

node {
name: "Placeholder"
op: "Placeholder"
attr {
key: "dtype"

(continues on next page)
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(continued from previous page)

value { type: DT_FLOAT }
}
attr {
key: "shape"
value {

shape {
dim { size: 3 }
dim { size: 4 }

}
}

}
}
node {

name: "Identity"
op: "Identity"
input: "Placeholder"
attr {
key: "T"
value { type: DT_FLOAT }

}
}

loco:

%input = Pull(dtype: FLOAT32, shape: [3, 4])
%ident = Forward(%input)
Push(%ident)

4.2.9 Const

Const in TensorFlow corresponds to ConstGen in loco.

Python:

import tensorflow as tf
constant = tf.constant(value=[1.0], dtype=tf.float32, shape=[3, 4])
tf.get_default_graph().as_graph_def()

API reference: tf.constant

TensorFlow:

node {
name: "Const"
op: "Const"
attr {
key: "dtype"
value { type: DT_FLOAT }

}
attr {
key: "value"
value {

tensor {
dtype: DT_FLOAT
tensor_shape {
dim { size: 3 }

(continues on next page)
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(continued from previous page)

dim { size: 4 }
}
float_val: 1.0

}
}

}
}

loco:

%constant = ConstGen(dtype: FLOAT32, shape: [3, 4], data: ...);
Push(%constant)

4.3 Backend

4.4 IR

4.4.1 coco

coco is an experimental coarse-grained intermediate representation (IR) for NN compilers.

4.4.2 loco

loco is a graph-based intermediate representation (IR) for neural network compilers.

4.4.3 Dialect Service

This loco enhancement proposal (LEP) discusses how to permit a loco graph without canonical dialect.

Revision

Motivation

One of key design principles behind loco is to allow users (= NN compiler writers) to easily define their own interme-
diate representation (IR) on top of shared infrastructure.

Unfortunately, however, there is a gap between dream and reality. It is currently impossible to create a loco graph
only with non-canonical dialects; there is no way to express the interaction between graph-level output without canon-
ical.Push node.

This proposal aims to remove this restriction in order to bridge the gap between dream and reality.

Design

Each dialect is now allowed to expose its internal to its client (such as transformations and core algorithms) through a
so-called “Service” interface.

Although this proposal focuses on output_nodes helper in loco.core, its coverage is not limited to this helper. Any
pass and algorithm can take an advantage of this generic infrastructure.
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Let us dive into some details.

What is “service”?

A service declares a collection of APIs that each client (not dialect) needs.

Let us consider output_nodes. output_nodes needs to check whether a node is associated with any graph-level
output.

Here is one possible service design that satisfies this need.

virtual bool associated(const Node *node) const = 0;
virtual GraphOutputIndex index(const Node *node) const = 0;

How to declare a service

All of these service interfaces should inherit loco::DialectService interface that loco.core defines.

struct DialectService
{

virtual ~DialectService() = default;
};

For example, it is possible to declare the service that output_nodes needs as follows:

struct GraphOutputIndexQueryService : public DialectService
{

virtual ~GraphOutputIndexQueryService() = default;

virtual bool associated(const Node *node) const = 0;
virtual GraphOutputIndex index(const Node *node) const = 0;

};

How to access a service

This proposal extends Dialect class with service method.

Each dialect SHOULD return a valid pointer on service<Service> method call if it implements that service.
Otherwise, it SHOULD return a null pointer otherwise.

WARNING It is impossible to use get. get is currently reserved for singleton accessor.

Given a GraphOutputIndexQueryService, it is possible to revise output_nodes as follows:

std::vector<loco::Node *> output_nodes(loco::Graph *g)
{

std::map<GraphOutputIndex, loco::Node *> table;

for (uint32_t n = 0; n < g->nodes()->size(); ++n)
{
auto node = g->nodes()->at(n);

if (auto service = node->dialect()->service<GraphOutputIndexQueryService>())
{

(continues on next page)
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(continued from previous page)

if (service->associated(node))
{

auto output_index = service->index(node);
assert(table.find(output_index) == table.end());
table[output_index] = node;

}
}

}

std::vector<loco::Node *> res;

for (uint32_t n = 0; n < g->outputs()->size(); ++n)
{
auto it = table.find(n);
// NOTE This behavior originates from the current implementation of output_nodes
res.emplace_back(it == table.end() ? nullptr : it->second);

}

return res;
}

PLEASE NOTE THAT output_nodes now works with all the dialects that implement
GraphOutputIndexQueryService.

How to register a service

Each dialect should invoke protected service method during its construction.

AwesomeDialect::AwesomeDialect()
{

std::unique_ptr<Impl> impl = ...;
service<GraphOutputIndexQueryService>(std::move(impl));

}

4.4.4 luci

luci provides IR for TFLite/Circle and Graph from FlatBuffer.

4.4.5 luci-export

luci-export provides exporting loco graph of Circle IR to Circle model file

4.4.6 luci-import

luci-import provides importing Circle model file to loco graph of luci Circle Dialect IR

4.4.7 luci-lang

luci-lang provides TensorFlow Lite and Circle Dialect IR
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4.4.8 luci-logex

luci-logex is a extended logging utility for luci compiler framework.

4.4.9 luci-log

luci-log is a logging framework for luci compiler framework.

4.4.10 luci-pass

luci-pass provides Circle Dialect transformation passes

4.4.11 luci-service

luci-service provides Circle Dialect Services

4.4.12 Model IR (MIR)

Purpose

This library exposes NNC’s model IR to the outer tools (currently Mirunner).

Design philosophy

MIR was designed to support a multiple-frontend NN compiler/optimizer.

Function

The high level overview of MIR is:

• operations are a composition of their inputs, outputs and special attributes specific to different operation
types.

• operations can have multiple inputs and multiple outputs, each output can be an input to more than one operation
(can be used in more than one operation).

• the kernel tensors are represented by ConstantOp and are linked to operations via Input objects.

Mir has a protobuf serializer/deserializer for shapes and tensors (see mir.proto schema).

For list of currently supported operations, see mir/ops/operations.lst.h.

How to use

Can be included as a CMake target.

TODO

• Expand serialization

• Add More to readme
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Dependencies

Mir depends on adtitas library, which provides the small_vector data type.

4.4.13 moco

moco provides building blocks to load and process TensorFlow models and to produce graph of loco canonical IR

4.4.14 moco-import

moco-import provides importing TensorFlow model file to moco TensorFlow Dialect IR

4.4.15 lang

lang provides TensorFlow Dialect IR

4.4.16 pass

pass provides moco General Graph Passes for Transformation and Optimization

4.4.17 service

service provides TensorFlow Dialect Services

4.4.18 support

support privides moco support libraries

4.4.19 oneco

4.5 Interpreter

4.5.1 locomotiv

locomotiv is a reference interpreter for loco IR.

4.5.2 Purpose

• locomotiv would serve as code level specification and reference implementation for loco IR.

• locomotiv is required for loco-related tools to be tested.
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4.5.3 Sample code to use locomotiv library

This sample code shows how to use locomotiv. Please refer to src/Session.test.cpp as well for actual usage.

template <typename T> using Buffer = nncc::core::ADT::tensor::Buffer<T>

loco::Graph *graph;
// ... building graph ...

// Open interpreter session
locomotiv::Session sess(graph);

for (uint32_t i = 0; i < s.input_size(); ++i)
{

Buffer<type> buffer;
// ... building buffer ...

locomotiv::NodeData input_data = locomotiv::make_data(buffer);

sess.set_input(i, input_data);
}

// Run inference
sess.infer();

// Query inferred output
locomotiv::NodeData *output_data = sess.get_output(query_index);

// Get buffer according to data type
switch(output_data->dtype())
{
case loco::DataType::S32:
{

Buffer<int32_t> output_buffer = output_data->as_s32_bufptr();
// Do something
break;

}
case loco::DataType::FLOAT32:
{

Buffer<float> output_buffer = output_data->as_f32_bufptr();
// Do something
break;

}
// ...
}

4.5.4 How to support new loco node execution: recommended guide

Steps to support new loco node

1. First of all, understand semantics of the node to newly support, especially on calculation spec and valid use
cases.

2. Add the node to locomotiv/src/Node.lst. Please keep alphabetical order. This automatically declares
NodeExecution::execute(TheNode *) and updates NodeExecution::run() to deal with the
node.
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3. Define execute(loco::TheNode *) at locomotiv/src/Node/TheNode.cpp.

4. Test new node execution at locomotiv/src/Node/TheNode.test.cpp if possible.

Note on internal data layout rule

For each domain(see loco::Domain), locomotiv has fixed layout rule on how to store its data in memory.

• Feature is represented as NHWC layout

– That is number of batch(N), height(H), width(W) and channel depth(C)

• Filter is represented as NHWC layout

– That is number of filter(N), height(H), width(W) and input channel depth(C)

• DepthwiseFilter is represented as HWCM layout

– That is height(H), width(W), input channel depth(C) and depth multiplier(M)

• Matrix is represented as HW layout

– That is height(H), width(W)

Notes on step 3

• Mocking Tensorflow lite reference_op.h might be a good place to start.

• execute() can be called multiple time. It just recalculates and updates annotated data. So it should
erase_annot_data() before newly annot_data().

• Most node execution behaviour would be implemented for each data type.

• execute() should throw runtime error on invalid cases. Some of these cases are explained:

– Invalid argument node

* e.g.) Pull -> MaxPool2D is invalid as MaxPool2D requires feature map as its argument.

– Lack of argument data

* e.g.) Given ‘Pull -> Push’ graph. On execution of Push, if no NodeData annotated to Pull, it is invalid.

– Mismatch of argument shapes

* e.g.) Addition between 2x2 and 3x3 tensor is invalid

* e.g.) MaxPool2D expects its ifm to be 4D feature, otherwise invalid.

– Mismatch between node’s own information and inferred information

* Some node already have attributes like shape or data type. If inferred information is different with
existing node’s, it is invalid.

Recommendation on step 4 (test)

• If the node has no arguments, create a node object and NodeExecution::run() on it. Check whether it
operates correctly.

• If the node has N(>= 1) arguments, make N pull node inputs, source them to the node to be tested. FeatureEncode
or FilterEncode node may be required inbetween depending on the node’s argument type. Then annotate N pull
nodes with its data, NodeExecution::run() on the node to test, and check whether it operates correctly.
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4.5.5 mir-interpreter

4.6 Libraries

4.6.1 adtidas

4.6.2 angkor

Purpose

angkor is a nncc core library

How to use

angkor implements abstract data type(ADT) for feature, kernel, tensor. There are layout, shape information and
enumerator and so on.

To use some of these things, just insert include!

#include <nncc/core/ADT/feature/WHAT_YOU_WANT>
#include <nncc/core/ADT/kernel/WHAT_YOU_WANT>
#include <nncc/core/ADT/tensor/WHAT_YOU_WANT>

Example

• compiler/coco/core/CMakeLists.txt

target_link_libraries(coco_core PUBLIC angkor)

• compiler/coco/core/src/IR/Arg.cpp

#include "coco/IR/Arg.h"

#include <nncc/core/ADT/tensor/LexicalLayout.h>
#include <nncc/core/ADT/tensor/IndexEnumerator.h>

namespace
{
const nncc::core::ADT::tensor::LexicalLayout l;
}

namespace coco
{

Arg::Arg(const nncc::core::ADT::tensor::Shape &shape) : _shape{shape}, _bag{nullptr}
{

_map.resize(nncc::core::ADT::tensor::num_elements(shape));
}

// ....

}
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4.6.3 bino

Let’s manipulate std::pair values with UNIX pipe-like syntax.

NOTE The bino originates from a binocular telescope.

4.6.4 cli

cli is a CLI (Command Line Interface) application framework.

4.6.5 Background

Many tools in nncc are command-line interface (CLI) applications. They generally need to handle command line
parameters. cli was written to reduce code duplication across such applications.

4.6.6 How to use

Please refer to cli/src/App.test.cpp for an example.

4.6.7 cwrap

cwrap is a collection of C++ wrappers for POSIX C API.

How to use

Currently it supports only file descriptor.

Example

• File Descriptor

cwrap::Fildes fildes{open(path.c_str(), O_RDONLY)};

if (fildes.get() < 0)
{

std::ostringstream ostr;
ostr << "Error: " << path << " not found" << std::endl;
throw std::runtime_error{ostr.str()};

}

google::protobuf::io::FileInputStream fis(fildes.get());

4.6.8 enco-intf

4.6.9 fipe

4.6.10 hermes

An extensible logging framework
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4.6.11 hermes-std

hermes-std is a collection of primitive hermes extensions.

4.6.12 kuma

kuma is a collection of offline memory allocators.

What does “kuma” mean?

kuma originates from cooma which is an abbreviation of Collection Of Offline Memory Alloators.

4.6.13 locop

locop is a collection of loco pretty printers.

4.6.14 mio-circle

Let’s make it easy to read and write Circle models.

4.6.15 mio-tf

mio-tf provides a library to access TensorFlow model files

4.6.16 mio-tflite

mio-tflite provides a library to access TensorFlow lite model files

NOTE: mio-tflite is currently obsolete

4.6.17 moco-log

moco-log is a logging framework for moco compiler framework.

4.6.18 morph

morph is a collection of shape conversion routines for various NN frameworks, such as Caffe.

4.6.19 nest

nest is a lightweight nested loop generation library, which makes it easy to generate complex, optimized nested loops
(such as loops in conv2d).
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References

• Halide

• Tensor Comprehension

4.6.20 nike

nike is a collection of numeric value comparison routines.

• nike is a combination of two words: numeric and dike. FYI, dike is the goddess of justice in ancient Greek
culture.

4.6.21 nnop

4.6.22 nnsuite

4.6.23 oops

4.6.24 pepper-assert

4.6.25 pepper-env

pepper-env makes it easy to access “process environment variables”.

4.6.26 pepper-str

Let us simulate string interpolation in C++!

HOW TO USE

#include <pepper/str.h>

int main(int argc, char **argv)
{

std::cout << pepper::str("There are ", argc, " arguments") << std::endl;
return 0;

}

4.6.27 pepper-strcast

pepper-strcast is a collection of string-to-value casting functions.

4.6.28 plier-tf

plier-tf is a collection of small tools to handle TensorFlow model.
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4.6.29 pp

pp is a library which provides various helper functions and classes for pretty-printing. This was originted while
writing C/C++ code generator.

4.6.30 Function (Feature)

With pp, the following can be built:

• multi-line structure with easy indentation, where each line can be accessed by index

• indented string

• concating string, int, etc., without user’s explicit type conversion

• multi-line string an so on.

4.6.31 How to use

• Some of examples are listed below:

– pp::fmt

std::cout << pp::fmt("Hello ", 2) << "\n"; // "Hello 2"
std::cout << pp::fmt("Hello ", "Good ", "World") << "\n"; // ""Hello Good
→˓World"

– pp::IndentedStringBuilder

pp::IndentedStringBuilder builder{};

std::cout << builder.build("A") << "\n"; // "A"
builder.increase();
std::cout << builder.build("B") << "\n"; // " B"
builder.decrease();
std::cout << builder.build("C") << "\n"; // "C"

– For more usage and examples, please refer to *.test.cpp under pp/src.

4.6.32 safemain

4.6.33 v4tf

What is this?

v4tf is is a wrapper interface to use TensorFlow by its C API. The name was originated from the movie, V for Vendetta,
where the main character V hides his face by wearing a mask.

Why do we need this?

In nncc, some tests use TensorFlow, which uses Protocol Buffers. For example, TensorFlow 1.12 uses Protocol Buffers
3.5.2.

Some of nncc modules use different version Protocol Buffers for internal purpose. If such modules also try to use
TensorFlow API, errors were thrown due to resolution of wrong symbols of different versions of Protocol Buffers.
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To prevent these errors, v4tf loads TensorFlow dynamically with all of its symbols resolved.

4.6.34 ann-api

4.6.35 ann-ref

ann-ref is a reference Android NN API implementation for Linux.

DISCLAIMER

ann-ref is incomplete in terms of its functionalities.

4.6.36 dredd-rule-lib

dredd-rule-lib is a library that defines functions to run dredd tests, which checks non-functional aspect of compiled
files.

Terms

Assume that we want to check the size of generated tflite file to be less than 1024 Bytes. In such case, we’d like to use
the following terms:

• “metric” : file size

• “rule” : file size < 1024

• “metric function”: file_size that returns size of a compiled tflite file

Models (input of test) exist in model repo, where

• “model repo” : directory where models exist. For tf2tflite-dredd-pbtxt-test, model repo is res/
TensorFlowTests.

Metrics supported

The following metric functions are provided:

• all_op_count : the count of operations inside a compiled tflite file

• file_size : the size of compiled tflite file

• In addition, op_count, conv2d_weight_not_constant, etc.

• Please , refer to rule-lib.sh for metric functions

Related projects - dredd tests

Four dredd test projects use dredd-rule-lib:

• tf2tflite-dredd-pbtxt-test

– Models in pbtxt, text file, are compiled into tflite file.

– Then rule file that each model has is checked against the tflite file.

• tf2tflite-dredd-pb-test

– Models in pb, binary file, are compiled into tflite file.
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– Then rule file that each model has is checked against the tflite file.

• tf2circle-dredd-pbtxt-test

– Models in pbtxt, text file, are compiled into circle file.

– Then rule file that each model has is checked against the circle file.

• tf2circle-dredd-pb-test

– Models in pb, binary file, are compiled into circle file.

– Then rule file that each model has is checked against the circle file.

Rule file

To be a target of dredd-tests, a .rule file must exist in a model directory. Please refer to res/
TensorFlowTests/NET_0025/tflite_1.0_rel_requirement.rule for an example.

Naming convention of rule file

Note that the file name tflite_1.0_rel_requirement.rule is our convention containing the information
below:

• Generated file type (tflite)

• SDK version (1.0_rel)

• Purpose (requirement)

How do all these work?

For tf2tflite-dredd-pbtxt-test, (tf2circle-dredd-pbtxt-test works similarly)

model repo tf2tflite-dredd-pbtxt-test
--------------------------------------------------------------------------------------
→˓---------

NET_0025
test.pbtxt ----------------------> converted to NET_0025.pb, and then NET_

→˓0025.tflite
| /|\

test.info ---------------------------+
| (input/output info of model)
|

tflite_1.0_rel_requirement.rule --> running rule file against tflite -->
→˓pass or fail

/|\
dredd-rule-lib | (using)

---------------------- |
rule-lib.sh |
- defining rule function --+

For tf2tflite-dredd-pb-test, (tf2circle-dredd-pb-test works similarly)

model repo tf2tflite-dredd-pb-test
--------------------------------------------------------------------------------------
→˓---------

(continues on next page)
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(continued from previous page)

Inception_v3
model.pb ------------------------> converted to Inception_v3.tflite

| /|\
model.info --------------------------+

| (input/output info of model)
|

tflite_1.0_rel_requirement.rule --> running rule file against tflite -->
→˓pass or fail

/|\
dredd-rule-lib | (using)

---------------------- |
rule-lib.sh |
- defining rule function --+

Model repo and How to add a model as a target of a dredd-test.

For tf2tflite-dredd-pbtxt-test and tf2circle-dredd-pbtxt-test, model repo is res/TensorFlowTests.

To add a model into these tests, the model directory name should be added into one of the following files:

• test.lst : This file resides in git

• test.local.lst : This file is ignored by git. Use this for personal purpose.

For tf2tflite-dredd-pb-test and tf2circle-dredd-pb-test, model repo is tf2tflite-dredd-pb-test/contrib
and .tf2circle-dredd-pb-test/contrib respectively.

Use these tests for binary models in large size.

To add a model into these tests, the model directory name should be added into the following file:

• contrib.lst : This file is ignored by git.

4.6.37 nnkit-caffe

4.6.38 nnkit-intf

nnkit-intf provides basic interface classes for nnkit backend/action.

4.6.39 nnkit-misc

nnkit-misc includes various helpers that make it easy to implement nnkit extensions and tools.
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4.6.40 nnkit-mocotf

4.6.41 nnkit-onnxrt

4.6.42 nnkit-tf

4.6.43 nnkit-tflite

4.6.44 tfinfo

This dir contains a helper classes to handle test.info files under res/TensorFlowTests.

Format of ‘test.info’ file

Each line should contain the following fields:

• input or output

• node_name:digits

• type (see enum TF_DataType in tensorflow/c/c_api.h)

• [ shapes ]

– In case of scalar, use ‘[ ]’ as shape

4.6.45 tfinfo-v2

4.7 Tools

These scripts can be useful for developing/testing nnc. Usage and purpose of the scripts can be found in comments in
their source code.

Note that these scripts are just development artifacts and are not supposed to go into production in any form.

infer_testcases.py: run inference with nnkit on testcases res2bin.py: used by infer_testcases.py to convert resulting
hdf5 to binary format

‘testcases’ folder structure: At the moment we use the following structure: a folder for a model contains ‘models’ and
‘testcases’ subfolders. The ‘models’ subfolder contains model that we run inference on, ‘testcases’ subfolder contains
a ‘testcase*’ folder for each different testcase. Each of those folders in turn contain ‘input’ with a ‘.JPEG’ file (and
‘.hdf5’ and ‘.dat’ files after running jpeg2hdf5 script), and ‘output’ folder where inference results are stored.

4.7.1 here I write how I run model on my computer

sections: a) goal of this script b) examples of code running in author’s local machine c) parametrs and short comment
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goal of this script

Here the author has attempted to implement a program capable of running any of the 4 models (caffe, caffe2, tflite,
onnx) in a simple and user-friendly manner. The goal of the program is to get the file containing the output of the
computation graph at the program output.

examples of code running in author’s local machine

The purpose of the examples below is to demonstrate which arguments and in which order you should use to run this
script correctly.

caffe:

$ python3 model_runner.py -m caffe1_runer/inception-v3_ref.caffemodel caffe1_runer/
→˓inception-v3_ref.prototxt -i caffe1_runer/ILSVRC2012_val_00000002.JPEG.tfl.hdf5

caffe2:

$ python model_runner.py -m caffe2_runer_and_photo/caffe2_models/init_net.pb caffe2_
→˓runer_and_photo/caffe2_models/predict_net.pb -i randomInput.hdf5

tflite:

$ python model_runner.py -m tflite_runer_and_photo/TST-1-2\ AVARAGE_POOP_2D.tflite -
→˓i tflite_runer_and_photo/in.hdf5

onnx:

$ python model_runner.py -m onnx_runer/model.onnx -i RANDOM.hdf5

parametrs and short comment

-m mean pre learned model which you run -i mean model’s input

These scripts can be useful for developing/testing nnc. Usage and purpose of the scripts can be found in comments in
their source code.

Note that these scripts are just development artifacts and are not supposed to go into production in any form.

jpeg2hdf5.py: prepare ‘.hdf5’ files from ‘.JPEG’ to be used by nnkit. Can also convert those ‘.JPEG’s to binary format
along the way.

‘testcases’ folder structure: At the moment we use the following structure: a folder for a model contains ‘models’ and
‘testcases’ subfolders. The ‘models’ subfolder contains model that we run inference on, ‘testcases’ subfolder contains
a ‘testcase*’ folder for each different testcase. Each of those folders in turn contain ‘input’ with a ‘.JPEG’ file (and
‘.hdf5’ and ‘.dat’ files after running jpeg2hdf5 script), and ‘output’ folder where inference results are stored.

4.7.2 caffegen

caffegen is a tool for generating caffe model and decoding binary file of caffe model
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How caffegen works

Some of commands in caffegen use standard input for reading data and standard output for exporting result. In this
case, we strongly recommand you to use pipe, not copy & paste the content of file itself.

Otherwise, caffegen use arguments to pass some directories.

Supported command

Basically, caffgen command is used as caffegen [COMMAND] and there are four COMMAND types.

• init : initialize parameters using prototxt.

• encode : make a binary file(caffemodel) using initialized data

• decode : decode a binary file(caffemodel) and reproduce the initialized data

• merge : copy the trained weights from a caffemodel into a prototxt file

How to use each command

1. Init (Using stdin and stdout)

• ./build/compiler/caffegen/caffegen init

– Type the prototxt by yourself

– Then you can get the result on the shell.

• cat ./res/BVLCCaffeTests/Convolution_000/test.prototxt | ./build/compiler/
caffegen/caffegen init

– Prototxt will be automatically passed

– Then you can get the result on the shell.

1. Encode (Using stdin and stdout)

• ./build/compiler/caffegen/caffegen encode

– Type the initialized data by yourself

– Then you can get the result on the shell.

• cat ./res/BVLCCaffeTests/Convolution_000/test.prototxt | ./build/compiler/
caffegen/caffegen init | ./build/compiler/caffegen/caffegen encode >
Convolution_000.caffemodel

– The initialized data will be automatically passed

– The encoded result will be automatically saved in caffemodel file

1. Decode (Using stdin and stdout)

• cat Convolution_000.caffemodel | ./build/compiler/caffegen/caffegen decode

– Caffemodel file will be automatically passed

– Then you can get the result on the shell

1. Merge (Using arguments)

• ./build/compiler/caffegen/caffegen merge ./res/BVLCCaffeTests/
Convolution_000/test.prototxt Convolution_000.caffemodel
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• ./build/compiler/caffegen/caffegen merge ./res/BVLCCaffeTests/
Convolution_000/test.prototxt Convolution_000.caffemodel >
Convolution_000.merged

4.7.3 circle-inspect

circle-inspect allows users to retrieve various information from a Circle model file

Information to inspect

Operators with --operators

• show operator codes one line at a time in execution order

Example

$ circle-inspect --operators model.circle

Result

RESHAPE
DEPTHWISE_CONV_2D
ADD

To get the count of specific operator, use other tools like sort, uniq, etc.

Operators with --tensor_dtype

• show name and dtype of each tensor one line at a time

Example

$ circle-inspect --tensor_dtype quantized_conv2d.circle

Result

ifm UINT8
weights UINT8
bias INT32
ofm UINT8

4.7.4 circle-verify

circle-verify allows users to verify Circle models.

Usage

Provide circle file as a parameter to verify validity.

$ circle-verify circlefile.circle

Result for valid file

[ RUN ] Check circlefile.circle
[ PASS ] Check circlefile.circle
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Result for invalid file

[ RUN ] Check circlefile.circle
[ FAIL ] Check circlefile.circle

4.7.5 circlechef

What is circlechef?

Do you need a circle model for testing? Ask it to circlechef. Given a recipe, circlechef will cook a circle model for
you.

NOTE circlechef covers only what tflchef does not cover. This is to support ops that exist only in circle shema, and
other things can be made using tflchef and tflite2circle.

4.7.6 circledump

What is this?

circledump is a tool that dumps binary circle file into human readable text to console.

circledump is implemented with C++ not python. We can do the same thing much easier with python but this tool
doesn’t need to install TensorFlow python package.

Schema for FlatBuffer used is from TensorFlow v1.13.1 release.

Design philosophy

Make the code simple.

To do

• Print weight values other than uint8_t

• Add more operators

How to use

Command argument format:

circledump circle_file

Example output of dump readme.circle file

Dump: readme.circle

Data Format:
CHANNEL_LAST (NHWC for 2d, NDHWC for 3d data)

Operator Codes: [order] OpCodeName (OpCode Enum)
[0] CONV_2D (code: 3)

(continues on next page)
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(continued from previous page)

Buffers: B(index) (length) values, if any
B(0) (0)
B(1) (8) 0x94 0x5b 0x95 0xbf 0x42 0xa4 0x52 0xbf ...
B(2) (4) 0xcd 0xcc 0x8c 0x3f

Operands: T(tensor index) TYPE (shape) B(buffer index) OperandName
T(0) FLOAT32 (1, 3, 3, 2) B(0) ifm
T(1) FLOAT32 (1, 1, 1, 2) B(1) ker
T(2) FLOAT32 (1) B(2) bias
T(3) FLOAT32 (1, 3, 3, 1) B(0) ofm

Operators: O(operator index) OpCodeName
Option(values) ... <-- depending on OpCode
I T(tensor index) OperandName <-- as input
O T(tensor index) OperandName <-- as output

O(0) CONV_2D
Padding(1) Stride.W(1) Stride.H(1) Activation(0)
I T(0) ifm
I T(1) ker
I T(2) bias
O T(3) ofm

Inputs/Outputs: I(input)/O(output) T(tensor index) OperandName
I T(0) ifm
I T(1) ker
O T(3) ofm

Dependency

• mio-circle06

• safemain

• FlatBuffers

4.7.7 encodump

encodump is a dumper for coco IR generated by enco

How to use

Sources for encodump are:

1. enco frontend library *.so file

2. model description file for matching to enco frontend

$ path/to/encodump \
--frontend [enco frontend library .so file]
--frontend-arg [model file] ...

Currently supported enco frontends are Caffe and tensorflow lite. For Caffe, both *.prototxt and *.
caffemodel are required, and for TFlite, *.tflite flatbuffers file is required.

Output is dumped into terminal.
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Example

nncc$ ./build/compiler/encodump/encodump \
--frontend ./build/compiler/enco/frontend/tflite/libenco_tflite_frontend.so \
--frontend-arg ./build/compiler/enco/test/tflite/Conv2D_000.tflite

Output:

<Module>
<Block> (index: 0)
<Inst>:

Eval (0x10cfa90)
out: 0x10cf960
<op>:
Load(0x10cf600, obj: 0x10cd670)
Conv2D(0x10cf8a0, ker obj: 0x10cf2d0, padding [T/B/L/R=0,0,0,0], stride [V/

→˓H = 1,1])
<Inst>:

Eval (0x10cff80)
out: 0x10cfb20
<op>:
Load(0x10cfe70, obj: 0x10cfcc0)
Load(0x10cfdd0, obj: 0x10cf960)
Add

<Inst>:
Copy (0x10d0120)

from: 0x10cfb20
into: 0x10cfff0

<Inst>:
Copy (0x10d01f0)

from: 0x10cfff0
into: 0x10cf210

<Input>: bag 0x10ce650, name=ifm
<Output>: bag 0x10ce9c0, name=ofm
<Bag>:
0x10ce650, obj: [0x10cd670], size: 18, input, const, reader: [x], updater: [x],
0x10ce770, obj: [0x10cf2d0], size: 2, const, reader: [x], updater: [x],
0x10ce890, obj: [0x10cfcc0], size: 1, const, reader: [x], updater: [x],
0x10ce9c0, obj: [0x10cf210], size: 9, output, const, reader: [x], updater: [x],
0x10cf9d0, obj: [0x10cf960], size: 9, const, reader: [x], updater: [x],
0x10cfbe0, obj: [0x10cfb20], size: 9, const, reader: [x], updater: [x],
0x10d0060, obj: [0x10cfff0], size: 9, const, reader: [x], updater: [x],

<Object>:
0x10cd670, bag: 0x10ce650, kind: Feature, Shape [H/W/D=3,3,2], producer: x,

→˓comsumer: [op: 0x10cf600]
0x10cf210, bag: 0x10ce9c0, kind: Feature, Shape [H/W/D=3,3,1], producer: instr:

→˓0x10d01f0, comsumer: [x]
0x10cf2d0, bag: 0x10ce770, kind: Kernel, Shape [N/H/W/D=1,1,1,2], producer: x,

→˓comsumer: [op: 0x10cf8a0]
0x10cf960, bag: 0x10cf9d0, kind: Feature, Shape [H/W/D=3,3,1], producer: instr:

→˓0x10cfa90, comsumer: [op: 0x10cfdd0]
0x10cfb20, bag: 0x10cfbe0, kind: Feature, Shape [H/W/D=3,3,1], producer: instr:

→˓0x10cff80, comsumer: [inst: 0x10d0120]
0x10cfcc0, bag: 0x10ce890, kind: Feature, Shape [H/W/D=3,3,1], producer: x,

→˓comsumer: [op: 0x10cfe70]
0x10cfff0, bag: 0x10d0060, kind: Feature, Shape [H/W/D=3,3,1], producer: instr:

→˓0x10d0120, comsumer: [inst: 0x10d01f0]
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4.7.8 i5diff

i5diff compares two HDF5 files that nnkit HDF5 export action generates.

DISCLAIMER i5diff is not designed as a general diff tool. It works only for HDF5 files that nnkit HDF5 export
action generates.

Yet Another Diff?

i5diff is able to detect shape mismatch that h5diff cannot detect.

To be precise, h5diff is also able to detect shape mismatch. Unfortunately, however, h5diff ends with 0 exitcode in the
presence of shape mismatch, and thus it is impossible to use h5diff for continuous integration.

How to use

$ /path/to/i5diff -d 0.001 /path/to/fst.h5 /path/to/snd.h5

4.7.9 nnkit

nnkit is collection of neural networks tools for our nncc project. This tool is mostly used for testing.

4.7.10 Purpose

For testing, we need to have

• a tool to run existing framework such as Tensorflow for expected tensor result — (1)

• a tool to run our implementation for actual tensor result — (2)

nnkit provides a flexible framework to get expected and actual result.

4.7.11 Design

Requirements to address:

• Input

– Same randomized input is used for both of (1) and (2)

– Expect tensor layout (e.g., NHWC) could be different for (1) and (2)

• Input and output format

– Results of (1) and (2) have same file format and data format

For (1), nnkit designed to enable the following:

• Input of nnkit is randomized and saved into a file in a specific format

• Existing framework such as Tensorflow can run with input tensors that is properly translated

• Result is written into a file in a specific format

For (2), nnkit designed to enable the following:

• Data of nnkit in a file by (1) is used as input
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• Our implementation can run with input tensors that is properly translated

• Result is written into a file in a specific format

nnkit-run

nnkit-run is a command line interface to interact with existing inference engines or compiled artifacts.

How nnkit-run works

nnkit-run first dynamically loads backend and multiple pre/post action specified by command-line. After
loading backend and actions, nnkit-run requests backend to prepare itself. When backend is prepared, backend
exposes its internal state to nnkit-run (as nnkit::TensorContext). nnkit-run takes this state, and passes
it to registered pre action(s). Each action may read tensor(s) (e.g. dump the content into a file), or manipulate
their value (e.g. fill random values). nnkit-run then invokes backend through run() method. After successful
running the backend, post action(s) are called same like pre action(s) as a teardown step.

Backends

In 2019 there will be the following backends as of writing this document

• Backends for the existing framework:

– Caffe as libnnkit_caffe_backend.so

– Tensorflow Lite as libnnkit_tflite_backend.so

– Tensorflow as libnnkit_tf_backend.so

– Onnx as libnnkit_onnx_backend.so

• Backends for our implementation:

– Moco Tensorflow (TBD)

– Moco Onnx (TBD)

4.7.12 How to use

How to run inference with nnkit-run

To run nnkit-run, we need to provide a backend module and argument(s) if required and optional pre- or post-
action module(s)

How to pass arguments

Syntax is --argument with value form. Existing arguments are as follows.

• --backend [Backend module path]. Only one is needed.

• --backend-arg [Backend argument]. Argument(s) for the backend.

• --pre [Pre-Action module path]. Multiple Pre-Action can be given.

• --pre-arg [Pre-Action argument]. Set argument(s) for the pre-action just before.

• --post [Post-Action module path]. Multiple Post-Action can be given.
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• --post-arg [Post-Action argument]. Set argument(s) for the post-action just before.

For example,

nnkit-run \
--backend ./path/to/backend --backend-arg arg1 --backend-arg arg2 \
--pre ./path/to/preA --pre-arg arg1preA --pre-arg arg2preA \
--pre ./path/to/preB --pre-arg arg1preB --pre-arg arg2preB \
--post ./path/to/postA --post-arg arg1postA

This will run

• backend ./path/to/backend with arguments arg1 arg2 with

– pre-action ./path/to/preA with arguments arg1preA arg2preA,

– pre-action ./path/to/preB with arguments arg1preB arg2preB and

– post-action ./path/to/postA with an argument arg1postA

Example : Running with Tensorflow backend

To run Tensorflow backend, you need two parameters: model file in protobuf format (pb file) and input/output tensor
information such as tensor name, data type, shape. Please refer to test.info files under moco/test/tf.

cd build

compiler/nnkit/tools/run/nnkit-run \
--backend ./compiler/nnkit-tf/backend/libnnkit_tf_backend.so \
--backend-arg inceptionv3_non_slim_2015.pb \
--backend-arg inceptionv3_non_slim_2015.info

Example: Running with Onnx backend

TBD

Example : Running with tflite backend

cd build

compiler/nnkit/tools/run/nnkit-run \
--backend ./compiler/nnkit-tflite/backend/libnnkit_tflite_backend.so \
--backend-arg inceptionv3_non_slim_2015.tflite

Example: Running with Caffe backend

Running with caffe backend is similar to running with tflite, except that you need to provide prototxt file,
caffemodel is not necessary, unless you want to use specific weights (weights are random if caffemodel is
not provided and prototxt is not filled with specific weights):

cd build

compiler/nnkit/tools/run/nnkit-run \
--backend ./compiler/nnkit-caffe/backend/libnnkit_caffe_backend.so \
--backend-arg inception_v3.prototxt
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Running with pre & post actions

The above command for the tflite backend shows nothing except nnapi error: unable to open
library libneuralnetworks.so warning even though running correctly. The following command displays
inferenced values.

cd build

compiler/nnkit/tools/run/nnkit-run \
--backend ./compiler/nnkit-tflite/backend/libnnkit_tflite_backend.so \
--backend-arg inceptionv3_non_slim_2015.tflite \
--post ./compiler/nnkit/actions/builtin/libnnkit_show_action.so

The following command initializes input tensors with random values generated by RandomizeAction pre-action.

compiler/nnkit/tools/run/nnkit-run \
--backend ./compiler/nnkit-tflite/backend/libnnkit_tflite_backend.so \
--backend-arg inceptionv3_non_slim_2015.tflite \
--pre ./compiler/nnkit/actions/builtin/libnnkit_randomize_action.so \
--post ./compiler/nnkit/actions/builtin/libnnkit_show_action.so

Example: Dump HDF5

You can drop a HDF5 file of inputs and outputs with HDF5_export_action action module.

cd build

compiler/nnkit/tools/run/nnkit-run \
--backend ./compiler/nnkit-tflite/backend/libnnkit_tflite_backend.so \
--backend-arg inceptionv3_non_slim_2015.tflite \
--pre ./compiler/nnkit/actions/builtin/libnnkit_randomize_action.so \ # randomize
→˓first
--pre ./compiler/nnkit/actions/HDF5/libnnkit_HDF5_export_action.so \ # then drop
→˓input in HDF5 format
--pre-arg ./pre.hdf5 \
--post ./compiler/nnkit/actions/HDF5/libnnkit_HDF5_export_action.so \ # drop output
→˓in HDF5 format
--post-arg ./post.hdf5

This will drop pre.hdf5 and post.hdf5 files containing input and output tensor of incep-
tionv3_non_slim_2015.tflite model.

4.7.13 To do

• nnkit backend for moco Tensorflow frontend

• nnkit backend for moco Onnx frontend

• nnkit backend for Onnx frontend

4.7.14 onnxkit

Purpose

onnxkit allows users to encode/decode ONNX model files.
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How to use

Currently it supports two operations, decode and encode.

nncc$ path_to_onnxkit/onnxkit
ERROR: COMMAND is not provided

USAGE: path_to_onnxkit/onnxkit [COMMAND] ...

SUPPORTED COMMANDS:
decode
encode

decode reads a binary graphproto file and shows its textual form.

encode is the reverse of decode, it reads a textual graphproto file and prints its binary form.

Each command can read from or print to the console or from/to a file if given through the argument. First argument
is used as an input file path and second as a output file path. If second argument is omitted, output is the console. To
give the first argument as a console, please use -.

Examples

Example to decode

nncc$ cat my_awesome_model.pb | path_to_onnxkit/onnxkit decode > decoded.pbtxt

nncc$ cat my_awesome_model.pb | path_to_onnxkit/onnxkit decode - decoded.pbtxt

nncc$ path_to_onnxkit/onnxkit decode my_awesome_model.pb > decoded.pbtxt

nncc$ path_to_onnxkit/onnxkit decode my_awesome_model.pb decoded.pbtxt

Above four examples for decode command gives the same result. This applies to other commands.

Example to encode

nncc$ cat decoded.pbtxt | path_to_onnxkit/onnxkit encode > encoded.pb

Dependency

• onnx

• Protobuf

• cli

4.7.15 tfkit

What is tfkit?

tfkit is a tool for manipulating TensorFlow model files.
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Tutorial: How to use?

Currently it supports two operations, decode and encode.

nncc$ path_to_tfkit/tfkit
ERROR: COMMAND is not provided

USAGE: path_to_tfkit/tfkit [COMMAND] ...

SUPPORTED COMMANDS:
decode
encode
unpack
pack

decode reads a binary graphdef file and shows its textual form.

encode is the reverse of decode, it reads a textual graphdef file and prints its binary form.

unpack decodes tensor value in byte encoded string in tensor_content field to human readable list of float
values. currently only supports textual graphdef files.

pack is the reverse of unpack. this can be used to change the values for debugging. also currently only supports
textual graphdef files.

Each command can read from or print to the console or from/to a file if given through the argument. First argument
is used as an input file path and second as a output file path. If second argument is omitted, output is the console. To
give the first argument as a console, please use -.

Examples

Example to decode

nncc$ cat my_awesome_model.pb | path_to_tfkit/tfkit decode > decoded.pbtxt

nncc$ cat my_awesome_model.pb | path_to_tfkit/tfkit decode - decoded.pbtxt

nncc$ path_to_tfkit/tfkit decode my_awesome_model.pb > decoded.pbtxt

nncc$ path_to_tfkit/tfkit decode my_awesome_model.pb decoded.pbtxt

Above four examples for decode command gives the same result. This applies to other commands.

Example to encode

nncc$ cat decoded.pbtxt | path_to_tfkit/tfkit encode > encoded.pb

Example to unpack

nncc$ cat packed.pbtxt | path_to_tfkit/tfkit unpack > unpacked.pbtxt

Example to pack

nncc$ cat unpacked.pbtxt | path_to_tfkit/tfkit pack > packed.pbtxt
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4.7.16 tfl-inspect

tfl-inspect allows users to retrieve various information from a TensorFlow Lite model files

Information to inspect

–operators

Operators with --operators

• show operator codes one line at a time in execution order

Example

$ tfl_inspect --operators model.tflite

Result

RESHAPE
DEPTHWISE_CONV_2D
ADD

To get the count of specific operator, use other tools like sort, uniq, etc.

Example

$ tfl-inspect --operators inception_v3.tflite | sort | uniq -c

Result

10 AVERAGE_POOL_2D
15 CONCATENATION
95 CONV_2D
4 MAX_POOL_2D
1 RESHAPE
1 SOFTMAX

–conv2d_weight

Conv2D series weight input node type with --conv2d_weight

• shows Conv2D series node weight input node type

• Conv2D series: CONV2D, DEPTHWISE_CONV_2D

Example result

CONV2D,CONST
DEPTHWISE_CONV_2D,RELU
CONV2D,CONST

4.7.17 tfl-verify

tfl-verify allows users to verify TF Lite models.
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Usage

Provide tflite file as a parameter to verify validity.

$ tfl-verify tflitefile.tflite

Result for valid file

[ RUN ] Check tflitefile.tflite
[ PASS ] Check tflitefile.tflite

Result for invalid file

[ RUN ] Check tflitefile.tflite
[ FAIL ] Check tflitefile.tflite

4.7.18 tflchef

What is tflchef?

Do you need a tensorflow lite model for testing? Ask it to tflchef. Given a recipe, tflchef will cook a tensorflow lite
model for you.

NOTE A model that tflchef generates is compatible with TensorFlow Lite in TensorFlow v1.12.0 release

Tutorial: How to use?

This example explains how to generate a tensorflow lite model with a single Conv2D operation with a kernel filled
with random values generated according to normal (or gaussian) distribution (mean = 0.0f / stddev = 1.0f) and bias
with constant values (1.1f) with tflchef.

The first step is to write a recipe! Type the following command, and then you may get sample.recipe:

$ cat > sample.recipe <<END
operand {

name: "ifm"
type: FLOAT32
shape { dim: 1 dim: 3 dim: 3 dim: 2 }

}
operand {

name: "ker"
type: FLOAT32
shape { dim: 1 dim: 1 dim: 1 dim: 2 }
filler {
tag: "gaussian"
arg: "0.0"
arg: "1.0"

}
}
operand {

name: "bias"
type: FLOAT32
shape { dim: 1 }
filler {
tag: "constant"

(continues on next page)
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(continued from previous page)

arg: "1.1"
}

}
operand {

name: "ofm"
type: FLOAT32
shape { dim: 1 dim: 3 dim: 3 dim: 1 }

}
operation {

type: "Conv2D"
conv2d_options {
padding: VALID
stride_w: 1
stride_h: 1

}
input: "ifm"
input: "ker"
input: "bias"
output: "ofm"

}
input: "ifm"
input: "ker"
output: "ofm"
END

Generate sample.tflite from sample.recipe with one of the following commands:

• With redirection

$ cat sample.recipe | tflchef > sample.tflite

• Without redirection

$ tflchef-file sample.recipe sample.tflite

Done :)

4.7.19 tfldump

What is this?

tfldump is a tool that dumps binary tflite file into human readable text to console.

tfldump is implemented with C++ not python. We can do the same thing much easier with python but this tool doesn’t
need to install TensorFlow python package.

Schema for FlatBuffer used is from TensorFlow v1.12.0 release.

Design philosophy

Make the code simple.

To do

• Print weight values other than uint8_t
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• Add more operators

How to use

Command argument format:

tfldump tflite_file

Example output of dump readme.tflite file

Dump: readme.tflite

Operator Codes: [order] OpCodeName (OpCode Enum)
[0] CONV_2D (code: 3)

Buffers: B(index) (length) values, if any
B(0) (0)
B(1) (8) 0x94 0x5b 0x95 0xbf 0x42 0xa4 0x52 0xbf ...
B(2) (4) 0xcd 0xcc 0x8c 0x3f

Operands: T(tensor index) TYPE (shape) B(buffer index) OperandName
T(0) FLOAT32 (1, 3, 3, 2) B(0) ifm
T(1) FLOAT32 (1, 1, 1, 2) B(1) ker
T(2) FLOAT32 (1) B(2) bias
T(3) FLOAT32 (1, 3, 3, 1) B(0) ofm

Operators: O(operator index) OpCodeName
Option(values) ... <-- depending on OpCode
I T(tensor index) OperandName <-- as input
O T(tensor index) OperandName <-- as output

O(0) CONV_2D
Padding(1) Stride.W(1) Stride.H(1) Activation(0)
I T(0) ifm
I T(1) ker
I T(2) bias
O T(3) ofm

Inputs/Outputs: I(input)/O(output) T(tensor index) OperandName
I T(0) ifm
I T(1) ker
O T(3) ofm

Dependency

• safemain

• FlatBuffers

4.7.20 tfts

TensorFlow Testcase Service provides various services on the TensorFlow testcases commited in this repo.
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4.7.21 moco-value-pbtxt-test

4.7.22 oneco-value-pbtxt-test

4.7.23 onnx2tflite-integration-test

4.7.24 tf2circle-conversion-test

Run tf2circle to test.lst and check whether given TF model is able to be converted into Circle model. Write
test.local.lst for local test list.

4.7.25 tf2circle-dredd-pb-test

TODO write content

4.7.26 tf2circle-dredd-pbtxt-test

TODO write content.

4.7.27 tf2circle-model-test

4.7.28 tf2circle-ui-check

tf2circle-ui-check makes it easy to check what tf2circle shows for selected TensorFlow testcases.

HOW TO USE

First of all, create “test.lst” file and add tests of interest. Here is an example of “test.lst”

Add(NET_0000)
Add(NET_0001)

Run “nncc configure”. You may find the below messages if tf2circle-ui-check is configured properly:

-- Configure TF2CIRCLE-UI-CHECK
-- Build tf2circle-ui-check: TRUE
-- Configure TF2CIRCLE-UI-CHECK - Done

Finally, build tf2circle_ui_check target and see what happens! If CMake uses “make” as a generator, you may
build tf2circle_ui_check target via running ./nncc build tf2circle_ui_check.

4.7.29 tf2circle-value-pbtxt-remote-test

tf2circle-value-pbtxt-remote-test does random value test for .circle file using remote machine,
normally Odroid, which nnfw runs on.
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Prerequisites

1. Tensorflow library

• Make sure that Tensorflow library could be found at nncc configure step. If there is no Tensorflow
library, this test will not be created.

• If CMake reports TensorFlow library is not found in configure step, even when the library exists, set
TENSORFLOW_PREFIX to include Tensorflow library like below.

$ ./nncc configure -DTENSORFLOW_PREFIX=/path/to/Tensorflow/library

• TENSORFLOW_PREFIX should contain Tensorflow library as shown below.

TENSORFLOW_PREFIX
include

| tensorflow
| | c
| | c_api.h
| ...
|
lib

| libtensorflow.so
| ...
...

2. Runtime Library and Binary files

• Detailed information is located in here

• If you build runtime, related files will be produced in Product/out. Do not rename or move it.

• (TBD) Support native build option

3. Remote machine information and test list

• You should create test.lst file first as shown below.

– Set IP address and username of remote machine using set command.

– Add Tensorflow models which you want to verify, which are in /res/TensorflowTests/

#--------------- Remote Machine Setting ---------------#
set(REMOTE_IP "xxx.xxx.xxx.xxx")
set(REMOTE_USER "remote_username")

#--------------------- Tests list ---------------------#
add(UNIT_Add_000)
add(UNIT_Add_001)
...

• If any Tensorflow model is added, or if REMOTE_IP and REMOTE_USER is not given,
tf2circle-value-pbtxt-remote-test will not be created.

4. (Optional) ssh authentication

• This test uses ssh and scp commands, and those commands require a password of remote machine
whenever they are called. This means that you should enter the password everytime when ssh and scp
require.
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• This test resolves the problem by using ssh-copy-id, which copies the public key of host machine
to authorized_keys of remote machine. Because of that, this test will ask the password of remote
machine only once, at the first time. This is the only user interaction while running this test.

• If you do not want to interact with system, just do ssh-copy-id
${REMOTE_USER}@${REMOTE_IP} in advance, before running this test. Once ssh-copy-id
is done, there will be no user-interaction action while running the test.

Running

• If you finished prerequisites properly, configuring -> building -> testing steps create cmake test automatically.

• All the related materials will be sent to REMOTE_WORKDIR in remote machine. Default value of
REMOTE_WORKDIR is CVT_YYMMDD_hhmmss, which means Circle Value Test done on YY/MM/DD at
hh:mm:ss.

• REMOTE_WORKDIR will not be removed automatically after this test finish.

$ ./nncc configure && ./nncc build

# Default REMOTE_WORKDIR is CVT_YYMMDD_hhmmss folder
$ ./nncc test -R tf2circle_value_pbtxt_remote_test

# You can set REMOTE_WORKDIR where you have write privilege
$ REMOTE_WORKDIR=/path/you/want/ ./nncc test -R tf2circle_value_pbtxt_remote_test

Generated Files While Running

• All related files(pb, circle, h5 . . . etc.) are created in build/compiler/
tf2circle-value-pbtxt-remote-test folder.

build/compiler/tf2circle-value-pbtxt-remote-test
Result_latest -> Result_YYMMDD_hhmmss.csv
Result_YYMMDD_hhmmss.csv
...

|
UNIT_Add_000

| metadata
| | MANIFEST
| | tc
| | expected.h5
| | input.h5
| UNIT_Add_000.circle
|
UNIT_Add_000.circle
UNIT_Add_000.expected.h5
UNIT_Add_000.info
UNIT_Add_000.input.h5
UNIT_Add_000.log
UNIT_Add_000.passed
UNIT_Add_000.pb
UNIT_Add_000.pbtxt

|
...

• Runtime products and each nnpackage are sent to REMOTE_WORKDIR in remote machine.
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• (TBD) Modify script not to remove obtained h5 file.

REMOTE_WORKDIR
|

Product
| out
| bin
| lib
| test
| ...
|

UNIT_Add_000
| metadata
| | MANIFEST
| | tc
| | expected.h5
| | input.h5
| | UNIT_Add_000.out.h5
| | (Only when comparing with expected.h5 fails)
| |
| UNIT_Add_000.circle

...

Check Test Result

• Summary of test result will be created as csv file in host.

# Result_latest is symbolic link to the latest csv result file
# Print the latest test result
$ cat build/compiler/tf2circle-value-pbtxt-remote-test/Result_latest
TEST_NAME, TF2CIRCLE, CIRCLE_VALUE_TEST
UNIT_Add_000, TRUE, TRUE
...

# List all result csv files
$ ls build/compiler/tf2circle-value-pbtxt-remote-test/Result_*.csv
Result_20191119_212521.csv
...

• Detailed log file for each test cases is also created.

$ cat build/compiler/tf2circle-value-pbtxt-remote-test/*.log

4.7.30 tf2tflite-dredd-pb-test

tf2tflite-dredd-pb-test validates non-functional aspects of .tflite files, which are compiled from .pb files.

For more information, please refer to README.md in dredd-rule-lib.
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4.7.31 tf2tflite-dredd-pbtxt-test

4.7.32 tf2tflite-value-pb-test

4.7.33 tf2tflite-value-pbtxt-test

Run tf2tflite to test.lst and do random value test using nnkit. Write test.local.lst for local test
list.

4.7.34 tf2tfliteV2-conversion-test

4.7.35 tflite2circle-conversion-test

Run tflite2circle to check whether tflite model is able to be converted into circle model.
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Common IR

5.1 Introduction to circle

5.2 What is Common IR
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CHAPTER 6

Package

6.1 Introduction to Package

6.2 Design of Package

6.2.1 Manifest

6.2.2 Supported Models

6.2.3 User Defined Operation
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CHAPTER 7

Platform

7.1 Ubuntu

7.2 Tizen

7.3 Android
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Devices

8.1 ODROID-XU3

8.2 ODROID-XU4

8.3 Raspberry Pi 3
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9.2 Benchmarks
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Feature Highlights

• ONE Compiler

– Compiler supports more operations

• ONE Runtime

– CPU backend supports more operations

ONE Compiler

Compiler supports more operations

The following operations are supported :

• Abs, Add, ArgMax, AvgPool2D, BatchToSpaceND, Cast, Concat, Const, Conv2D, Cos, Custom, DepthwiseC-
onv2D, Div, Elu, Equal, Exp, ExpandDims, Fill, FloorDiv, FloorMod, FullyConnected, Gather, GatherNd,
Greater, GreaterEqual, If, LeakyRelu, Less, LocalResponseNormalize, LogicalAnd, LogicalNot, LogicalOr,
Logistic, Maximum, MaxPool2D, Mean, Minimum, MirrorPad, Mul, Neg, NotEqual, OneHot, Pack, Pad, Pow,
Range, ReduceAny(Any), ReduceMax(Max), ReduceProd, ReduceSum(Sum), ReLU, RELU_N1_TO_1, Re-
shape, ResizeNearestneighbor, Rsqrt, Select, Shape, Sin, Slice, Softmax, SpaceToBatchND, SpaceToDepth,
Split, SplitV, Square, SquaredDifference, Squeeze, StridedSlice, Sub, Tanh, Tile, TopKV2, Transpose, Un-
pack(Unstack), While, ZerosLike

ONE Runtime

CPU backend supports more operations

The following operations are supported on CPU backend :

• ArgMax, Cos, ExpandDims, Fill, Log, LogicalNot, LogicalOr, Mean, Neg, Pow, ReLU, ReduceAny, Reduce-
Prod, Reverse, Round, Select, SquaredDifference, Tile, ZerosLike

10.7 1.6

10.7.1 Release Note 1.6.0

Feature Highlights

• ONE Compiler

– Compiler supports 22 more operations including 1 custom operation.

• ONE Runtime

– CPU backend supports 8 more operations

– Support dynamically shaped tensors

– Support Control Flow operations

– API updates

• Add ONE Runtime package for x86_64 linux (Experimental)
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ONE Compiler

Compiler supports more operations

• AddN, ArgMin, Custom(BatchMatmul), Ceil, DepthToSpace, Floor, InstanceNormalize, L2Normalization,
L2Pool, LessEqual, Log, LogSoftmax, PReLU, Rank, ReduceMin(Min), ResizeBilinear, Round, ScatterND,
Sqrt, TransposeConv, BCQGather, BCQFullyConnected

ONE Runtime

CPU backend supports more operations

• BatchMatMul, BroadcastTo, Einsum, FusedBatchNorm, MatrixBandPart, Range, ReduceAll, Add(quant8)

Support dynamically shaped tensors

• Support static shape inference (input resizing)

• Support dynamic shape inference (general resizing)

Support Control Flow operations

• IF and WHILE

• Fully support static and dynamic tensors

API updates

• Introduce nnfw_set_input_tensorinfo for input resizing

• nnfw_input_tensorinfo and nnfw_output_tensorinfo behavior have changed to return tensor-
info according to the session state

10.8 1.7

10.8.1 Feature Highlights

• ONE Compiler

– Compiler supports more operations

– New command line interface for user interface consistancy

• ONE Runtime

– Runtime CPU backend supports more operations

– Runtime CPU backend supports more quant8 operations

– API changes

– New optimization
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10.8.2 ONE Compiler

Compiler supports more operations

• MatrixDiag, MatrixSetDiag, ReverseSequence, ReverseV2, SegmentSum, SelectV2, SparseToDense, Where

New command line interface for user interface consistancy

• one-import: imports conventional model files to circle

– one-import-tf: imports TensorFlow model to circle

– one-import-tflite: imports TensorFlow lite model to circle

• one-optimize: circle optimize command

• one-quantize: circle quantize command

– supports float32 to uint8, layer wise (for Conv series)

• one-pack: package command

• one-prepare-venv: prepares python virtual environment for importing TensorFlow model

• one-codegen: backend(if available) code generator

10.8.3 ONE Runtime

Runtime CPU backend supports more operations

• LogSoftmax, SpaceToBatchND

Runtime CPU backend supports more quant8 operations

• Logistic, Mul, Tanh, SpaceToBatchND, Transpose, Sub, Max, Min, Less, Greater, GreaterEqual, LessEqual,
Equal, NotEqual

API changes

• Introduce basic asynchronous execution API

New optimization

• Remove dynamic tensor overhead from static models

10.9 1.8

10.9.1 Release Note 1.8.0

Feature Highlights

• ONE Compiler
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– Support new command line interface

• ONE Runtime

– CPU backend supports 7 more operations

– CPU backend supports 9 more quant8 operations

ONE Compiler

New command line interface for user interface consistancy

• one-import-bcq : import BCQ(Binary coding quantized) TensorFlow model

• Commands now support --version option to show version number

Changes

• Experimental support for TensorFlow 2.x has updated to 2.3.0 (TensorFlow 1.3.2 is our official support version)

• Support more operators in luci-interpreter

• Enhancing one-quantizer

ONE Runtime

Rename headers

• Rename nnfw_dev.h to nnfw_experimental.h

Optimization

• Remove copies for model input/outputs whenever possible

Support CPU backend operation

• BatchToSpaceND, L2Normalization, ReLU6, ResizeBilinear, SpaceToDepth, SplitV, StatelessRandomUniform

Support CPU backend quant8 operation

• BatchToSpaceND, L2Normalization, Pad, PadV2, ResizeBilinear, Slice, Quantize, SpaceToDepth, Sum

10.10 1.9

10.10.1 Release Note 1.9.0

ONE Compiler
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Compiler supports more operations

• NonMaxSuppressionV4, NonMaxSuppressionV5, PadV2, Unique

Changes

• Quantization enhancements: channel wise UINT8 quantization(Conv2D, DepwiseConv, TransposeConv, Fully-
Connected)

• Experimental requantization from INT8 to UINT8

• Adding more operator value tests

• tf2tfliteV2 supports conversion from Keras model, saved model

• Refactoring for better maintenance long Class codes using visitor patterns

• Introducing optimization pass that fuses batch normalization with Transposed Convolution.

ONE Runtime

Runtime backend operation support

• CPU backend: RANK

• CPU backend qasymm uint8: LOG_SOFTMAX

• ACL-CL backend: LEAKY_RELU, RESIZE_NEAREST_NEIGHBOR

Optimization

• Copy Elimination between compatible backends

Operation Implementation

• Operations with same parameters are unified

Change

• CPU backend qasymm uint8 performance enhancement: arithmetic operations

10.10.2 Release Note 1.9.1

ONE Compiler

Changes

• tf2nnpkg now supports to import TensorFlow model which includes BCQ information.

• Minor change for preserving BCQ information.

• Fix invalid input arguments and add more error handles for one-cmds
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10.11 1.10

10.11.1 Release Note 1.10.0

ONE Compiler

Compiler supports more operations

• Dequantize, UnidirectionalSequenceLSTM

Changes

• New --fold_dequantize option in one-optimize

• New --fuse_add_with_tconv option in one-optimize

• Support int16 quantization in one-quantize

• Test scripts are added for basic testing of one-cmds command line tools

• Bug fixes for one-cmds command line tools

ONE Runtime

Runtime backend operation support

• ACL-CL backend: OneHot

• CPU backend: FullyConnected for Float32 16x1 Block Sparsity

Optimization

• Speed up for ReduceSum, StrideSlice and BinaryArithmetic in CPU backend

10.12 1.11

10.12.1 Release Note 1.11.0

ONE Compiler

Compiler supports more operations

• MaxPoolWithArgMax by CustomOp
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Changes

• one-build command added as representative command

• one-cmds are now revised to python script and supports configuration file as input parameters

• added rawdata2hdf5 tool to help creating input datasets for calibration

• added more optimization passes in one-optimize; fuse_preactivation_batchnorm,
make_batchnorm_gamma_positive and fuse_activation_function

ONE Runtime

Runtime backend operation supports more operations and types

• CPU backend

– float: AddN, Floor, UniDirectionalSequenceLSTM

– uint8: Dequantize, Rank

– int8: Dequantize, Rank, Shape

10.13 1.12

10.13.1 Release Note 1.12.0

ONE Compiler

Compiler Frontend

• Add optimization pass: ReplaceMulAddWithDepthwiseConvPass, SubstitutePackToReshape, RemoveRedun-
dantTranspose, ShuffleWeightTo16x1Float32Pass

• Add quantization for InstanceNorm.

• Fix bug of one-import-bcq command for --v1, --v2 arguments.

• Fix FuseBCQPass to work with inter-subgraphs in the model file and minor BCQ related optimizations.

ONE Runtime

Runtime backend operation supports more operations and types

• CPU backend

– Concat: int8

– DepthToSpace: float, uint8, int8

– LeakyRelu: float

• ACL-CL backend

– ArgMin: float, uint8, int8

• ACL-NEON backend
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– ArgMax: int8

– ArgMin: float, uint8, int8

nnpackage defines configuration file

• Allow users to set configuration variable via conf file. For more information, See nnpackage spec

10.14 1.13

10.14.1 Release Note 1.13.0

ONE Compiler

Compiler Frontend

• Add optimization pass: ConvertNCHWToNHWC, FoldSparseToDensePass, FuseBatchNormWithConvPass,
ForwardReshapeToUnaryOpPass, RemoveUnnecessarySlicePass, RemoveUnnecessarySplitPass, RemoveUn-
necessaryReshapePass, RemoveRedundantReshape, SubstituteTransposeToReshapePass, SubstituteSqueeze-
ToReshapePass,

• Support more operators: FAKE_QUANT

• Enhancements: Support auto generated random input for record-minmax (for better quantization testing)

• Changes: --all option to --O1 in circle2circle(and one-optimize)

• Fixes: tf2tfliteV2 accept input shapes --v2 option, lots of fixes for increase test coverage

• Experimental: Compile ONNX models to circle

10.15 1.14

10.15.1 Release Note 1.14.0

ONE Compiler

Compiler Frontend

• one-codegen interface now distinguishes own arguments from backend’s.

• Adds RemoveUnnecessaryStridedSlice optimization pass.

• Introduces experimental support for generating profile data.

– Adds --generate_profile_data option to one-optimize, one-quantize.
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10.16 1.15

10.16.1 Release Note 1.15.0

ONE Compiler

Compiler Frontend

• Support more Ops for quantization

• Fix record-minmax tool for bool type, NaN values

• Fix one-cmds test scripts

• Remove stdex module

• arser supports short option

ONE Runtime

Runtime backend supports more operations and types

• CPU backend

– Add: int8

– AvgPool2d: int8

– Conv2D: int8

– DepthwiseConv2D: int8

– Div: uint8

– Elu: float

– ExpandDims: int8

– LogicalAnd: boolean

– Maximum: uint8

– MaxPool2D: int8

– Minimum: uint8

– Mul: int8

– Pad: int8

– PadV2: int8

– Quantize: uint8, int8

– Reshape: int8

– Resizebiliear: int8

– Softmax: int8

– Squeeze: int8

– Sub: int8
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ARM Compute Library Update

• ONERT uses Compute Library v21.02

10.17 1.16

10.17.1 Release Note 1.16.0

ONE Compiler

Compiler Frontend

• Enable PadV2 in luci-interpreter and quantization

• Provide circle-tensordump, circledump as a development tool

• Provide luci-eval-driver as test tool

• Enable STRING type as constant values in CircleConst

• Fix CircleCustom may have 0 input, 0 output

• Enable debian package generation

• More optimization pass

– Min(6)+ReLU to ReLU6

– Remove FakeQuant Op

• Experimental support of ONNX upgraded to version 1.8.0 with additional patch

• Fix bugs where one-cmds’ config file didn’t evaluate boolean properly

10.17.2 Release Note 1.16.1

ONE Compiler

Compiler Frontend

• Extends the point where one-codegen finds backends.
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Indices and tables

• genindex

• modindex

• search
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